Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Geothermal water $\left(c_{p}=4250 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at \)75^{\circ} \mathrm{C}$ is to be used to heat fresh water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) at \(17^{\circ} \mathrm{C}\) at a rate of \(1.2 \mathrm{~kg} / \mathrm{s}\) in a double-pipe counterflow heat exchanger. The heat transfer surface area is $25 \mathrm{~m}^{2}\(, the overall heat transfer coefficient is \)480 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, and the mass flow rate of geothermal water is larger than that of fresh water. If the effectiveness of the heat exchanger must be \(0.823\), determine the mass flow rate of geothermal water and the outlet temperatures of both fluids.

Short Answer

Expert verified
Question: Calculate the mass flow rate of the geothermal water and the outlet temperatures of both fluids in a double-pipe counterflow heat exchanger, given the effectiveness of the heat exchanger as 0.823, the specific heat, temperature, and mass flow rate of the fresh water, and the specific heat and temperature of the geothermal water. Answer: The mass flow rate of the geothermal water is 2.768 kg/s, the outlet temperature of the fresh water is 56.102°C, and the outlet temperature of the geothermal water is 50.503°C.

Step by step solution

01

Calculate Outlet Temperature of Fresh Water

First, we will apply the effectiveness formula and solve it for \(T_{\mathrm{f}}^{\mathrm{o}}\). \(\varepsilon = \frac{T_{\mathrm{f}}^{\mathrm{o}} - T_{\mathrm{f}}^{\mathrm{i}}}{(1-\varepsilon) \cdot(T_{\mathrm{h}}^{\mathrm{i}} - T_{\mathrm{f}}^{\mathrm{i}})}\) \(T_{\mathrm{f}}^{\mathrm{o}}=(\varepsilon \cdot (1-\varepsilon) \cdot(T_{\mathrm{h}}^{\mathrm{i}} - T_{\mathrm{f}}^{\mathrm{i}})) + T_{\mathrm{f}}^{\mathrm{i}}\) Plug in the given values: \(T_{\mathrm{f}}^{\mathrm{o}}=(0.823 \cdot (1 - 0.823) \cdot(75^{\circ} \mathrm{C} - 17^{\circ} \mathrm{C})) + 17^{\circ} \mathrm{C}= 56.102^{\circ} \mathrm{C}\) Now we have the outlet temperature of fresh water.
02

Calculate the Outlet Temperature of Geothermal Water

Using the heat transfer equation: \(Q = m_{\mathrm{h}} \cdot c_{p, \mathrm{h}} \cdot (T_{h}^{\mathrm{i}} - T_{\mathrm{h}}^{\mathrm{o}}) = m_{\mathrm{f}} \cdot c_{p, \mathrm{f}} \cdot (T_{\mathrm{f}}^{\mathrm{o}} - T_{\mathrm{f}}^{\mathrm{i}})\) Solve for the outlet temperature of geothermal water \(T_{\mathrm{h}}^{\mathrm{o}}\): \(T_{\mathrm{h}}^{\mathrm{o}} = T_{\mathrm{h}}^{\mathrm{i}} - \frac{m_{\mathrm{f}} \cdot c_{p, \mathrm{f}} \cdot (T_{\mathrm{f}}^{\mathrm{o}} - T_{\mathrm{f}}^{\mathrm{i}})}{m_{\mathrm{h}} \cdot c_{p, \mathrm{h}}}\) Since we don't know \(m_{\mathrm{h}}\) yet, we should continue to step 3 and find \(m_{\mathrm{h}}\). We will plug in m_h later.
03

Determine C_h, C_f, and C

Calculate heat capacity rates for each fluid (C_h and C_f): \(C_{\mathrm{h}} = m_{\mathrm{h}} \cdot c_{p, \mathrm{h}}\) \(C_{\mathrm{f}} = m_{\mathrm{f}} \cdot c_{p, \mathrm{f}}\) Plug in given values for fresh water: \(C_{\mathrm{f}} = 1.2 \,\mathrm{kg \, s^{-1}} \cdot 4180 \,\mathrm{J \,\,kg^{-1} K^{-1}} = 5016 \,\mathrm{W \, K^{-1}}\) Calculate the heat transfer capacity ratio: \(C = \frac{\,\min(C_{\mathrm{h}},C_{\mathrm{f}})}{\max(C_{\mathrm{h}},C_{\mathrm{f}})} = \frac{C_{\mathrm{h}}}{C_{\mathrm{f}}}\), since \(m_{\mathrm{h}} > m_{\mathrm{f}}\) From the given effectivity \(\varepsilon\) and the calculated outlet temperature of the fresh water, find the NTU: \(NTU = \frac{-\ln{[(1 - \varepsilon) \cdot (1 - C)]}}{C} = 4.901\) Now we are able to determine \(m_{\mathrm{h}}\).
04

Determine the Mass Flow Rate of Geothermal Water

Calculate mass flow rate of geothermal water using NTU: \(NTU = \frac{UA}{(\min(C_{\mathrm{h}}, C_{\mathrm{f}}))}\), where \(U = 480 \ \mathrm{W \,\,m^{-2} K^{-1}}\) and \(A = 25 \ \mathrm{m^2}\), \(m_{\mathrm{h}} = \frac{UA}{NTU \cdot c_{p, \mathrm{h}}}\) Plug in the known values: \(m_{\mathrm{h}} = \frac{480 \,\mathrm{W \,\,m^{-2} K^{-1}} \cdot 25 \,\mathrm{m^2}}{4.901 \cdot 4250 \,\mathrm{J \,\,kg^{-1} K^{-1}}} = 2.768 \ \mathrm{kg \,\,s^{-1}}\) Now plug in \(m_{\mathrm{h}}\) in the equation of Step 2 to calculate the outlet temperature of the geothermal water: \(T_{\mathrm{h}}^{\mathrm{o}} = 75^{\circ} \mathrm{C} - \frac{(1.2 \,\mathrm{kg \, s^{-1}})(4180 \,\mathrm{J \,\,kg^{-1} K^{-1}})(56.102^{\circ} \mathrm{C} - 17^{\circ} \mathrm{C})}{(2.768 \,\mathrm{kg \, s^{-1}})(4250 \,\mathrm{J \,\,kg^{-1} K^{-1}})} = 50.503^{\circ} \mathrm{C}\) Final results: - Mass flow rate of geothermal water: \(m_{\mathrm{h}} = 2.768 \,\mathrm{kg \,s^{-1}}\) - Outlet temperature of fresh water: \(T_{\mathrm{f}}^{\mathrm{o}} = 56.102^{\circ} \mathrm{C}\) - Outlet temperature of geothermal water: \(T_{\mathrm{h}}^{\mathrm{o}} = 50.503^{\circ} \mathrm{C}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Cold water $\left(c_{p}=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( enters a crossflow heat exchanger at \)14^{\circ} \mathrm{C}\( at a rate of \)0.35 \mathrm{~kg} / \mathrm{s}$ where it is heated by hot air $\left(c_{p}=1.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( that enters the heat exchanger at \)65^{\circ} \mathrm{C}$ at a rate of \(0.8 \mathrm{~kg} / \mathrm{s}\) and leaves at $25^{\circ} \mathrm{C}$. Determine the maximum outlet temperature of the cold water and the effectiveness of this heat exchanger.

Consider two double-pipe counterflow heat exchangers that are identical except that one is twice as long as the other one. Which heat exchanger is more likely to have a higher effectiveness?

A heat exchanger is to cool oil $\left(c_{p}=2200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at a rate of \)10 \mathrm{~kg} / \mathrm{s}$ from \(120^{\circ} \mathrm{C}\) to \(40^{\circ} \mathrm{C}\) by air. Determine the heat transfer rating of the heat exchanger and propose a suitable type.

Water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) enters the \(2.5\)-cm-internaldiameter tube of a double-pipe counterflow heat exchanger at \(20^{\circ} \mathrm{C}\) at a rate of $2.2 \mathrm{~kg} / \mathrm{s}\(. Water is heated by steam condensing at \)120^{\circ} \mathrm{C}\left(h_{f g}=2203 \mathrm{~kJ} / \mathrm{kg}\right)$ in the shell. If the overall heat transfer coefficient of the heat exchanger is $700 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, determine the length of the tube required in order to heat the water to \(80^{\circ} \mathrm{C}\) using \((a)\) the LMTD method and \((b)\) the \(\varepsilon-\mathrm{NTU}\) method.

Discuss the differences between the cardiovascular countercurrent design and standard engineering countercurrent designs.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free