Chapter 11: Problem 168
Consider a water-to-water counterflow heat exchanger with these specifications. Hot water enters at \(90^{\circ} \mathrm{C}\) while cold water enters at \(20^{\circ} \mathrm{C}\). The exit temperature of the hot water is \(15^{\circ} \mathrm{C}\) greater than that of the cold water, and the mass flow rate of the hot water is 50 percent greater than that of the cold water. The product of heat transfer surface area and the overall heat transfer coefficient is \(2200 \mathrm{~W} / \mathrm{K}\). Taking the specific heat of both cold and hot water to be $c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\(, determine \)(a)\( the outlet temperature of the cold water, \)(b)$ the effectiveness of the heat exchanger, \((c)\) the mass flow rate of the cold water, and \((d)\) the heat transfer rate.