Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A shell-and-tube heat exchanger with two shell passes and four tube passes is used for cooling oil $\left(c_{p}=2.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( from \)125^{\circ} \mathrm{C}\( to \)55^{\circ} \mathrm{C}$. The coolant is water, which enters the shell side at \(25^{\circ} \mathrm{C}\) and leaves at \(46^{\circ} \mathrm{C}\). The overall heat transfer coefficient is \(900 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). For an oil flow rate of \(10 \mathrm{~kg} / \mathrm{s}\), calculate the cooling water flow rate and the heat transfer area.

Short Answer

Expert verified
$$q = 140,000 \mathrm{~W}$$ #tag_title# Step 2: Calculate the cooling water flow rate#tag_content# To calculate the cooling water flow rate, we can use the energy balance equation for the water side (cold side), assuming the specific heat capacity of water, \(c_{p\_water} = 4.18 \mathrm{~kJ/kg \cdot K}\): $$q = m_{cold}c_{p\_water}\left(T_{cold\_outlet} - T_{cold\_inlet}\right)$$ Solve for \(m_{cold}\) (cooling water flow rate): $$m_{cold} = \frac{q}{c_{p\_water}(T_{cold\_outlet} - T_{cold\_inlet})}$$ Plug in the given values and calculate the cooling water flow rate: $$m_{cold} = \frac{140,000 \mathrm{~W}}{4.18 \times 10^3 \mathrm{~J/kg \cdot K}(46 - 25) \mathrm{~K}}$$ $$m_{cold} = 6.35 \mathrm{~kg/s}$$ #tag_title# Step 3: Calculate the heat transfer area#tag_content# The heat transfer area can be calculated using the heat transfer equation: $$q = UA\Delta T_{lm}$$ where \(\Delta T_{lm}\) is the logarithmic mean temperature difference, and A is the heat transfer area. First, we need to calculate the logarithmic mean temperature difference: $$\Delta T_{lm} = \frac{\left(T_{hot\_inlet} - T_{cold\_outlet}\right) - \left(T_{hot\_outlet} - T_{cold\_inlet}\right)}{\ln\left(\frac{T_{hot\_inlet} - T_{cold\_outlet}}{T_{hot\_outlet} - T_{cold\_inlet}}\right)}$$ Plug in the given values and calculate \(\Delta T_{lm}\): $$\Delta T_{lm} = \frac{(125 - 46) - (55 - 25)}{\ln\left(\frac{125 - 46}{55 - 25}\right)}$$ $$\Delta T_{lm} ≈ 47.24 ^{\circ} \mathrm{C}$$ Next, calculate the heat transfer area, A, by rearranging the heat transfer equation: $$A = \frac{q}{U\Delta T_{lm}}$$ Plug in the given values and calculate the heat transfer area: $$A = \frac{140,000 \mathrm{ ~W}}{900 \mathrm{~W/m^2 \cdot K} * 47.24 \mathrm{~K}}$$ $$A ≈ 3.29 \mathrm{~m^2}$$ #Answer# The cooling water flow rate is 6.35 kg/s and the heat transfer area of the shell-and-tube heat exchanger is 3.29 m².

Step by step solution

01

Calculate the heat transfer rate

To calculate the heat transfer rate, we can use the energy balance equation for the oil side (hot side): $$q = m_{hot}c_{p}\left(T_{hot\_inlet} - T_{hot\_outlet}\right)$$ where \(q\) is the heat transfer rate. Plug in the given values and calculate the heat transfer rate: $$q = 10 \mathrm{~kg/s} * 2.0 \mathrm{~kJ/kg \cdot K} * (125 - 55) \mathrm{~K} = 10^3* 2.0 * 70 \mathrm{~W}$$

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider a condenser unit (shell and tube heat exchanger) of an HVAC facility where saturated refrigerant \(\mathrm{R}-134 \mathrm{a}\) at a saturation pressure of \(1318.6 \mathrm{kPa}\) and at a rate of $2.5 \mathrm{~kg} / \mathrm{s}$ flows through thin-walled copper tubes. The refrigerant enters the condenser as saturated vapor and we wish to have a saturated liquid refrigerant at the exit. The cooling of refrigerant is carried out by cold water that enters the heat exchanger at \(10^{\circ} \mathrm{C}\) and exits at \(40^{\circ} \mathrm{C}\). Assuming the initial overall heat transfer coefficient of the heat exchanger to be $3500 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, determine the surface area of the heat exchanger and the mass flow rate of cooling water for complete condensation of the refrigerant. In practice, over a long period of time, fouling occurs inside the heat exchanger that reduces its overall heat transfer coefficient and causes the mass flow rate of cooling water to increase. Increase in the mass flow rate of cooling water will require additional pumping power, making the heat exchange process uneconomical. To prevent the condenser unit from underperforming, assume that fouling has occurred inside the heat exchanger and has reduced its overall heat transfer coefficient by 20 percent. For the same inlet temperature and flow rate of refrigerant, determine the new flow rate of cooling water to ensure complete condensation of the refrigerant at the heat exchanger exit.

A one-shell-pass and eight-tube-passes heat exchanger is used to heat glycerin $\left(c_{p}=0.60 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)\( from \)80^{\circ} \mathrm{F}\( to \)140^{\circ} \mathrm{F}$ by hot water $\left(c_{p}=1.0 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right)\( that enters the thin-walled \)0.5$-in-diameter tubes at \(175^{\circ} \mathrm{F}\) and leaves at \(120^{\circ} \mathrm{F}\). The total length of the tubes in the heat exchanger is \(400 \mathrm{ft}\). The convection heat transfer coefficient is $4 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\( on the glycerin (shell) side and \)50 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$ on the water (tube) side. Determine the rate of heat transfer in the heat exchanger \((a)\) before any fouling occurs and \((b)\) after fouling with a fouling factor of \(0.002 \mathrm{~h} \cdot \mathrm{ft}^{2}-\mathrm{F} / \mathrm{B}\) tu on the outer surfaces of the tubes.

Hot oil \(\left(c_{p}=2200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) is to be cooled by water $\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)$ in a 2-shell-passes and 12 -tube-passes heat exchanger. The tubes are thin-walled and are made of copper with a diameter of $1.8 \mathrm{~cm}\(. The length of each tube pass in the heat exchanger is \)3 \mathrm{~m}\(, and the overall heat transfer coefficient is \)340 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Water flows through the tubes at a total rate of \(0.1 \mathrm{~kg} / \mathrm{s}\), and the oil flows through the shell at a rate of \(0.2 \mathrm{~kg} / \mathrm{s}\). The water and the oil enter at temperatures \(18^{\circ} \mathrm{C}\) and \(160^{\circ} \mathrm{C}\), respectively. Determine the rate of heat transfer in the heat exchanger and the outlet temperatures of the water and the oil. Answers: $36.2 \mathrm{~kW}, 104.6^{\circ} \mathrm{C}, 77.7^{\circ} \mathrm{C}$

In a one-shell and two-tube heat exchanger, cold water with inlet temperature of \(20^{\circ} \mathrm{C}\) is heated by hot water supplied at the inlet at \(80^{\circ} \mathrm{C}\). The cold and hot water flow rates are $5000 \mathrm{~kg} / \mathrm{h}\( and \)10,000 \mathrm{~kg} / \mathrm{h}$, respectively. If the shell-andtube heat exchanger has a \(U A_{s}\) value of \(11,600 \mathrm{~W} / \mathrm{K}\), determine the cold water and hot water outlet temperatures. Assume $c_{p c}=4178 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\( and \)c_{p t}=4188 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$.

Consider a recuperative crossflow heat exchanger (both fluids unmixed) used in a gas turbine system that carries the exhaust gases at a flow rate of $7.5 \mathrm{~kg} / \mathrm{s}\( and a temperature of \)500^{\circ} \mathrm{C}$. The air initially at \(30^{\circ} \mathrm{C}\) and flowing at a rate of $15 \mathrm{~kg} / \mathrm{s}$ is to be heated in the recuperator. The convective heat transfer coefficients on the exhaust gas and air sides are $750 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\( and \)300 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}$, respectively. Due to long-term use of the gas turbine, the recuperative heat exchanger is subject to fouling on both gas and air sides that offers a resistance of \(0.0004\) \(\mathrm{m}^{2}\). $/ \mathrm{W}$ each. Take the properties of exhaust gas to be the same as that of air \(\left(c_{p}=1069 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\). If the exit temperature of the exhaust gas is \(320^{\circ} \mathrm{C}\), determine \((a)\) if the air could be heated to a temperature of \(150^{\circ} \mathrm{C}\) and \((b)\) the area of the heat exchanger. (c) If the answer to part \((a)\) is no, then determine what should be the air mass flow rate in order to attain the desired exit temperature of \(150^{\circ} \mathrm{C}\) and \((d)\) plot the variation of the exit air temperature over a range of \(75^{\circ} \mathrm{C}\) to \(300^{\circ} \mathrm{C}\) with the air mass flow rate, assuming all the other conditions remain the same.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free