Chapter 11: Problem 162
A two-shell-pass and four-tube-pass heat exchanger is used for heating a hydrocarbon stream $\left(c_{p}=2.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( steadily from \)20^{\circ} \mathrm{C}\( to \)50^{\circ} \mathrm{C}\(. A water stream enters the shell side at \)80^{\circ} \mathrm{C}$ and leaves at \(40^{\circ} \mathrm{C}\). There are 160 thin-walled tubes, each with a diameter of \(2.0 \mathrm{~cm}\) and length of \(1.5 \mathrm{~m}\). The tube-side and shell-side heat transfer coefficients are \(1.6\) and $2.5 \mathrm{~kW} / \mathrm{m}^{2} \cdot \mathrm{K}$, respectively. (a) Calculate the rate of heat transfer and the mass rates of water and hydrocarbon streams. (b) With usage, the outlet hydrocarbon-stream temperature was found to decrease by \(5^{\circ} \mathrm{C}\) due to the deposition of solids on the tube surface. Estimate the magnitude of the fouling factor.