Chapter 11: Problem 153
The cardiovascular countercurrent heat exchanger mechanism is to warm venous blood from \(28^{\circ} \mathrm{C}\) to \(35^{\circ} \mathrm{C}\) at a mass flow rate of \(2 \mathrm{~g} / \mathrm{s}\). The artery inflow temperature is \(37^{\circ} \mathrm{C}\) at a mass flow rate of \(5 \mathrm{~g} / \mathrm{s}\). The average diameter of the vein is \(5 \mathrm{~cm}\) and the overall heat transfer coefficient is \(125 \mathrm{~W} / \mathrm{m}^{2}\). K. Determine the overall blood vessel length needed to warm the venous blood to $35^{\circ} \mathrm{C}$ if the specific heat of both arterial and venous blood is constant and equal to \(3475 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\).