Chapter 11: Problem 14
What are the common causes of fouling in a heat exchanger? How does fouling affect heat transfer and pressure drop?
Chapter 11: Problem 14
What are the common causes of fouling in a heat exchanger? How does fouling affect heat transfer and pressure drop?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a closed-loop heat exchanger that carries exit water $\left(c_{p}=1 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}\right.$ and \(\left.\rho=62.4 \mathrm{lbm} / \mathrm{ft}^{3}\right)\) of a condenser side initially at \(100^{\circ} \mathrm{F}\). The water flows through a 500 -ft-long stainless steel pipe of 1 in inner diameter immersed in a large lake. The temperature of lake water surrounding the heat exchanger is $45^{\circ} \mathrm{F}$. The overall heat transfer coefficient of the heat exchanger is estimated to be $250 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$. What is the exit temperature of the water from the immersed heat exchanger if it flows through the pipe at an average velocity of \(9 \mathrm{ft} / \mathrm{s}\) ? Use the \(\varepsilon-N T U\) method for analysis.
In a parallel-flow, water-to-water heat exchanger, the hot water enters at \(75^{\circ} \mathrm{C}\) at a rate of \(1.2 \mathrm{~kg} / \mathrm{s}\) and cold water enters at \(20^{\circ} \mathrm{C}\) at a rate of $0.9 \mathrm{~kg} / \mathrm{s}$. The overall heat transfer coefficient and the surface area for this heat exchanger are \(750 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) and \(6.4 \mathrm{~m}^{2}\), respectively. The specific heat for both the hot and cold fluids may be taken to be $4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$. For the same overall heat transfer coefficient and the surface area, the increase in the effectiveness of this heat exchanger if counterflow arrangement is used is (a) \(0.09\) (b) \(0.11\) (c) \(0.14\) (d) \(0.17\) (e) \(0.19\)
Hot water coming from the engine is to be cooled by ambient air in a car radiator. The aluminum tubes in which the water flows have a diameter of $4 \mathrm{~cm}$ and negligible thickness. Fins are attached on the outer surface of the tubes in order to increase the heat transfer surface area on the air side. The heat transfer coefficients on the inner and outer surfaces are 2000 and \(150 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), respectively. If the effective surface area on the finned side is 12 times the inner surface area, the overall heat transfer coefficient of this heat exchanger based on the inner surface area is (a) \(760 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (b) \(832 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (c) \(947 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (d) \(1075 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (e) \(1210 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\)
In a textile manufacturing plant, the waste dyeing water $\left(c_{p}=4295 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at \)80^{\circ} \mathrm{C}$ is to be used to preheat fresh water $\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at \)10^{\circ} \mathrm{C}$ at the same flow rate in a double-pipe counterflow heat exchanger. The heat transfer surface area of the heat exchanger is \(1.65 \mathrm{~m}^{2}\), and the overall heat transfer coefficient is $625 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. If the rate of heat transfer in the heat exchanger is \)35 \mathrm{~kW}$, determine the outlet temperature and the mass flow rate of each fluid stream.
The National Sanitation Foundation (NSF) standard for commercial warewashing equipment (ANSL/NSF 3) requires that the final rinse water temperature be between 82 and \(90^{\circ} \mathrm{C}\). A shell-and-tube heat exchanger is to heat \(0.5 \mathrm{~kg} / \mathrm{s}\) of water $\left(c_{p}=4200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( from 48 to \)86^{\circ} \mathrm{C}$ by geothermal brine flowing through a single shell pass. The heated water is then fed into commercial warewashing equipment. The geothermal brine enters and exits the heat exchanger at 98 and \(90^{\circ} \mathrm{C}\), respectively. The water flows through four thin-walled tubes, each with a diameter of $25 \mathrm{~mm}$, with all four tubes making the same number of passes through the shell. The tube length per pass for each tube is \(5 \mathrm{~m}\). The corresponding convection heat transfer coefficients on the outer and inner tube surfaces are 1050 and $2700 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, respectively. The estimated fouling factor caused by the accumulation of deposit from the geothermal brine is $0.0002 \mathrm{~m}^{2} . \mathrm{K} / \mathrm{W}$. Determine the number of passes required for the tubes inside the shell to heat the water to \(86^{\circ} \mathrm{C}\), within the temperature range required by the ANIS/NSF 3 standard.
What do you think about this solution?
We value your feedback to improve our textbook solutions.