Chapter 11: Problem 113
A shell-and-tube heat exchanger with two shell passes and eight tube passes is used to heat ethyl alcohol $\left(c_{p}=2670 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( in the tubes from \)25^{\circ} \mathrm{C}\( to \)70^{\circ} \mathrm{C}\( at a rate of \)2.1 \mathrm{~kg} / \mathrm{s}$. The heating is to be done by water $\left(c_{p}=4190 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( that enters the shell at \)95^{\circ} \mathrm{C}$ and leaves at \(60^{\circ} \mathrm{C}\). If the overall heat transfer coefficient is $800 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$, determine the heat transfer surface area of the heat exchanger using \((a)\) the LMTD method and \((b)\) the \(\varepsilon-\mathrm{NTU}\) method. Answer: \((a) 11.4 \mathrm{~m}^{2}\)