Chapter 11: Problem 111
Hot oil \(\left(c_{p}=2200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) is to be cooled by water $\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)$ in a 2-shell-passes and 12 -tube-passes heat exchanger. The tubes are thin-walled and are made of copper with a diameter of $1.8 \mathrm{~cm}\(. The length of each tube pass in the heat exchanger is \)3 \mathrm{~m}\(, and the overall heat transfer coefficient is \)340 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Water flows through the tubes at a total rate of \(0.1 \mathrm{~kg} / \mathrm{s}\), and the oil flows through the shell at a rate of \(0.2 \mathrm{~kg} / \mathrm{s}\). The water and the oil enter at temperatures \(18^{\circ} \mathrm{C}\) and \(160^{\circ} \mathrm{C}\), respectively. Determine the rate of heat transfer in the heat exchanger and the outlet temperatures of the water and the oil. Answers: $36.2 \mathrm{~kW}, 104.6^{\circ} \mathrm{C}, 77.7^{\circ} \mathrm{C}$