Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How is the thermal resistance due to fouling in a heat exchanger accounted for? How do the fluid velocity and temperature affect fouling?

Short Answer

Expert verified
Answer: Thermal resistance due to fouling refers to the additional resistance to heat transfer that occurs due to the accumulation of undesirable materials on heat exchanger surfaces. Fluid velocity and temperature play crucial roles in fouling formation. Higher fluid velocities can help reduce fouling by increasing turbulence and scouring the surfaces, while fluid temperature can have varying effects on fouling rates depending on fluid properties and type of fouling mechanisms involved. Engineers use fouling factors to account for this resistance, allowing for better prediction and control of heat transfer performance.

Step by step solution

01

Understand thermal resistance due to fouling

Thermal resistance due to fouling is the additional resistance to heat transfer, introduced by the accumulation of undesirable materials on heat exchanger surfaces. Fouling can be caused by scaling, deposition of particles, or the growth of biological organisms in the heat exchanger. The presence of fouling increases the overall thermal resistance, which in turn reduces the heat exchanger's efficiency.
02

Accounting for thermal resistance due to fouling

To account for thermal resistance due to fouling, engineers introduce a fouling factor, also known as the fouling resistance, into the calculation of the overall heat transfer coefficient (U) in a heat exchanger. The modified formula for U becomes: U = 1 / [(1/ h_1) + (1/ h_2) + R_f1 + R_f2] where h_1 and h_2 are the heat transfer coefficients for the two fluids, and R_f1 and R_f2 are the fouling resistances for the two fluids, respectively. The fouling resistance, expressed in square meter kelvin per Watt (m²K/W), is determined based on experimental data and depends on the type of fluids, operating conditions, and the design of the heat exchanger.
03

Fluid velocity and its effect on fouling

Fluid velocity plays an important role in the fouling process. Higher fluid velocities usually result in lower fouling rates in the heat exchanger. At high velocities, the fluid turbulence can help to prevent particle deposition and scour the surfaces, reducing the formation of fouling layers. However, if the fluid velocity is too high, it may cause erosion of the heat exchanger surfaces or excessive vibrations, which can damage the equipment.
04

Fluid temperature and its effect on fouling

The temperature of the fluid can also influence fouling rates. In general, an increase in temperature can accelerate fouling processes, such as chemical reaction or precipitation. However, in some cases, higher temperatures can reduce fouling by increasing the solubility of certain substances or by promoting an autocatalytic cleaning process. The effect of temperature on fouling depends on the specific properties of the fluid and the type of fouling mechanisms involved. In conclusion, thermal resistance due to fouling is an important consideration when designing and operating heat exchangers. It can significantly impact the efficiency of the heat exchanger, and can be affected by several factors, including the fluid velocity and temperature. Engineers use fouling factors to account for this resistance, allowing for better prediction and control of heat transfer performance.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Cold water $\left(c_{p}=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( enters a counterflow heat exchanger at \)18^{\circ} \mathrm{C}\( at a rate of \)0.7 \mathrm{~kg} / \mathrm{s}$ where it is heated by hot air \(\left(c_{p}=1.0 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\) that enters the heat exchanger at \(50^{\circ} \mathrm{C}\) at a rate of $1.6 \mathrm{~kg} / \mathrm{s}\( and leaves at \)25^{\circ} \mathrm{C}$. The maximum possible outlet temperature of the cold water is (a) \(25.0^{\circ} \mathrm{C}\) (b) \(32.0^{\circ} \mathrm{C}\) (c) \(35.5^{\circ} \mathrm{C}\) (d) \(39.7^{\circ} \mathrm{C}\) (e) \(50.0^{\circ} \mathrm{C}\)

Oil in an engine is being cooled by air in a crossflow heat exchanger, where both fluids are unmixed. Oil $\left(c_{p l}=2047 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( flowing with a flow rate of \)0.026 \mathrm{~kg} / \mathrm{s}\( enters the tube side at \)75^{\circ} \mathrm{C}$, while air \(\left(c_{p c}=1007 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) enters the shell side at \(30^{\circ} \mathrm{C}\) with a flow rate of $0.21 \mathrm{~kg} / \mathrm{s}$. The overall heat transfer coefficient of the heat exchanger is \(53 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\), and the total surface area is \(1 \mathrm{~m}^{2}\). If the correction factor is \(F=0.96\), determine the outlet temperatures of the oil and air.

Geothermal water $\left(c_{p}=4250 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at \)75^{\circ} \mathrm{C}$ is to be used to heat fresh water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) at \(17^{\circ} \mathrm{C}\) at a rate of \(1.2 \mathrm{~kg} / \mathrm{s}\) in a double-pipe counterflow heat exchanger. The heat transfer surface area is $25 \mathrm{~m}^{2}\(, the overall heat transfer coefficient is \)480 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, and the mass flow rate of geothermal water is larger than that of fresh water. If the effectiveness of the heat exchanger must be \(0.823\), determine the mass flow rate of geothermal water and the outlet temperatures of both fluids.

A crossflow heat exchanger with both fluids unmixed has an overall heat transfer coefficient of \(200 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) and a heat transfer surface area of \(400 \mathrm{~m}^{2}\). The hot fluid has a heat capacity of \(40,000 \mathrm{~W} / \mathrm{K}\), while the cold fluid has a heat capacity of \(80,000 \mathrm{~W} / \mathrm{K}\). If the inlet temperatures of both hot and cold fluids are \(80^{\circ} \mathrm{C}\) and $20^{\circ} \mathrm{C}$, respectively, determine the exit temperature of the cold fluid.

Water is boiled at \(150^{\circ} \mathrm{C}\) in a boiler by hot exhaust gases $\left(c_{p}=1.05 \mathrm{~kJ} / \mathrm{kg}^{\circ}{ }^{\circ} \mathrm{C}\right)\( that enter the boiler at \)540^{\circ} \mathrm{C}$ at a rate of \(0.4 \mathrm{~kg} / \mathrm{s}\) and leave at \(200^{\circ} \mathrm{C}\). The surface area of the heat exchanger is \(0.64 \mathrm{~m}^{2}\). The overall heat transfer coefficient of this heat exchanger is\(\mathrm{kg} / \mathrm{s}\) with cold water $\left(c_{p}=4.18 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}\right)\( that enters the heat exchanger at \)20^{\circ} \mathrm{C}$ at a rate of \(0.6 \mathrm{~kg} / \mathrm{s}\). If the overall heat transfer coefficient is \(800 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), the heat transfer area of the heat exchanger is (a) \(0.745 \mathrm{~m}^{2}\) (b) \(0.760 \mathrm{~m}^{2}\) (c) \(0.775 \mathrm{~m}^{2}\) (d) \(0.790 \mathrm{~m}^{2}\) (e) \(0.805 \mathrm{~m}^{2}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free