Chapter 11: Problem 101
Water \(\left(c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) is to be heated by solarheated hot air $\left(c_{p}=1010 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)$ in a double-pipe counterflow heat exchanger. Air enters the heat exchanger at \(90^{\circ} \mathrm{C}\) at a rate of \(0.3 \mathrm{~kg} / \mathrm{s}\), while water enters at $22^{\circ} \mathrm{C}\( at a rate of \)0.1 \mathrm{~kg} / \mathrm{s}$. The overall heat transfer coefficient based on the inner side of the tube is given to be $80 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. The length of the tube is \)12 \mathrm{~m}\(, and the internal diameter of the tube is \)1.2 \mathrm{~cm}$. Determine the outlet temperatures of the water and the air.