Chapter 10: Problem 61
What is the modified latent heat of vaporization? For what is it used? How does it differ from the ordinary latent heat of vaporization?
Chapter 10: Problem 61
What is the modified latent heat of vaporization? For what is it used? How does it differ from the ordinary latent heat of vaporization?
All the tools & learning materials you need for study success - in one app.
Get started for freeSteam condenses at \(50^{\circ} \mathrm{C}\) on the tube bank consisting of 20 tubes arranged in a rectangular array of 4 tubes high and 5 tubes wide. Each tube has a diameter of \(3 \mathrm{~cm}\) and a length of \(5 \mathrm{~m}\), and the outer surfaces of the tubes are maintained at \(30^{\circ} \mathrm{C}\). The rate of condensation of steam is (a) \(0.12 \mathrm{~kg} / \mathrm{s}\) (b) \(0.28 \mathrm{~kg} / \mathrm{s}\) (c) \(0.31 \mathrm{~kg} / \mathrm{s}\) (d) \(0.45 \mathrm{~kg} / \mathrm{s}\) (e) \(0.62 \mathrm{~kg} / \mathrm{s}\) (For water, use $\rho_{l}=992.1 \mathrm{~kg} / \mathrm{m}^{3}, \mu_{l}=0.653 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\(, \)\left.k_{t}=0.631 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, c_{p l}=4179 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}, h_{f g} \oplus T_{\omega}=2383 \mathrm{~kJ} / \mathrm{kg}\right)$
A 1 -mm-diameter long electrical wire submerged in water at atmospheric pressure is dissipating \(4100 \mathrm{~W} / \mathrm{m}\) of heat, and the surface temperature reaches \(128^{\circ} \mathrm{C}\). If the experimental constant that depends on the fluid is \(n=1\), determine the nucleate boiling heat transfer coefficient and the value of the experimental constant $C_{\text {sf. }}$.
Saturated ammonia vapor at \(25^{\circ} \mathrm{C}\) condenses on the outside surface of 16 thin-walled tubes, \(2.5 \mathrm{~cm}\) in diameter, arranged horizontally in a \(4 \times 4\) square array. Cooling water enters the tubes at \(14^{\circ} \mathrm{C}\) at an average velocity of \(2 \mathrm{~m} / \mathrm{s}\) and exits at \(17^{\circ} \mathrm{C}\). Calculate \((a)\) the rate of \(\mathrm{NH}_{3}\) condensation, (b) the overall heat transfer coefficient, and \((c)\) the tube length.
In condensate flow, how is the wetted perimeter defined? How does wetted perimeter differ from ordinary perimeter?
A 1-mm-diameter nickel wire with electrical resistance of $0.129 \Omega / \mathrm{m}$ is submerged horizontally in water at atmospheric pressure. Determine the electrical current at which the wire would be in danger of burnout in nucleate boiling.
What do you think about this solution?
We value your feedback to improve our textbook solutions.