Chapter 10: Problem 61
Consider film condensation on a vertical plate. Will the heat flux be higher at the top or at the bottom of the plate? Why?
Chapter 10: Problem 61
Consider film condensation on a vertical plate. Will the heat flux be higher at the top or at the bottom of the plate? Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeFour long ASTM A437 B4B stainless steel bolts are used to hold two separated plates together. The bolts are cylindrical, and each has a diameter of \(13 \mathrm{~mm}\). Between the two plates, the horizontal bolts are exposed to saturated propane vapor. The length of each bolt between the plates is \(15 \mathrm{~cm}\). The bolts are arranged in a vertical tier, and condensation of saturated propane occurs on the bolts at 344 \(\mathrm{kPa}\). The minimum temperature suitable for ASTM A437 B4B stainless steel bolts is \(-30^{\circ} \mathrm{C}\) (ASME Code for Process Piping, ASME B31.3-2014, Table A-2M). Determine the highest rate of condensation that can occur on the bolts, without cooling the bolts below the minimum suitable temperature set by the ASME Code for Process Piping.
Saturated ammonia vapor at \(25^{\circ} \mathrm{C}\) condenses on the outside surface of 16 thin-walled tubes, \(2.5 \mathrm{~cm}\) in diameter, arranged horizontally in a \(4 \times 4\) square array. Cooling water enters the tubes at \(14^{\circ} \mathrm{C}\) at an average velocity of \(2 \mathrm{~m} / \mathrm{s}\) and exits at \(17^{\circ} \mathrm{C}\). Calculate \((a)\) the rate of \(\mathrm{NH}_{3}\) condensation, (b) the overall heat transfer coefficient, and \((c)\) the tube length.
When boiling a saturated liquid, one must be careful while increasing the heat flux to avoid burnout. Burnout occurs when the boiling transitions from _____ boiling. (a) convection to nucleate (b) convection to film (c) film to nucleate (d) nucleate to film (e) none of them
A \(2-\mathrm{mm}\)-diameter cylindrical metal rod with emissivity of \(0.5\) is submerged horizontally in water under atmospheric pressure. When electric current is passed through the metal rod, the surface temperature reaches \(500^{\circ} \mathrm{C}\). Determine the power dissipation per unit length of the metal rod.
A non-boiling two-phase flow of air and engine oil in a 25 -mm-diameter tube has a bulk mean temperature of \(140^{\circ} \mathrm{C}\). If the flow quality is \(2.1 \times 10^{-3}\) and the mass flow rate of the engine oil is $0.9 \mathrm{~kg} / \mathrm{s}$, determine the mass flow rate of air and the superficial velocities of air and engine oil.
What do you think about this solution?
We value your feedback to improve our textbook solutions.