Chapter 10: Problem 60
How does the presence of a noncondensable gas in a vapor influence the condensation heat transfer?
Chapter 10: Problem 60
How does the presence of a noncondensable gas in a vapor influence the condensation heat transfer?
All the tools & learning materials you need for study success - in one app.
Get started for freeSaturated water vapor at atmospheric pressure condenses on the outer surface of a \(0.1-\mathrm{m}\)-diameter vertical pipe. The pipe is \(1 \mathrm{~m}\) long and has a uniform surface temperature of \(80^{\circ} \mathrm{C}\). Determine the rate of condensation and the heat transfer rate by condensation. Discuss whether the pipe can be treated as a vertical plate. Assume wavy-laminar flow and that the tube diameter is large relative to the thickness of the liquid film at the bottom of the tube. Are these good assumptions?
What is the modified latent heat of vaporization? For what is it used? How does it differ from the ordinary latent heat of vaporization?
A cylindrical rod is used for boiling water at \(1 \mathrm{~atm}\). The rod has a diameter of \(1 \mathrm{~cm}\), and its surface has an emissivity of \(0.3\). Determine the film boiling convection heat transfer coefficient at the burnout point. Evaluate the properties of vapor at \(1150^{\circ} \mathrm{C}\). Discuss whether \(1150^{\circ} \mathrm{C}\) is a reasonable film temperature for the vapor properties.
Consider a non-boiling gas-liquid two-phase flow in a tube, where the ratio of the mass flow rate is \(\dot{m}_{l} / \dot{m}_{g}=300\). Determine the flow quality \((x)\) of this non-boiling two-phase flow.
A \(10-\mathrm{cm} \times 10\)-cm horizontal flat heater is used for vaporizing refrigerant- \(134 \mathrm{a}\) at \(350 \mathrm{kPa}\). The heater is supplied with \(0.35 \mathrm{MW} / \mathrm{m}^{2}\) of heat flux, and the surface temperature of the heater is \(25^{\circ} \mathrm{C}\). If the experimental constant in the Rohsenow correlation is \(n=1.7\), determine the value of the coefficient \(C_{s f}\). Discuss whether or not the Rohsenow correlation is applicable in this analysis.
What do you think about this solution?
We value your feedback to improve our textbook solutions.