Chapter 10: Problem 6
How does film boiling differ from nucleate boiling? Is the boiling heat flux necessarily higher in the stable film boiling regime than it is in the nucleate boiling regime?
Chapter 10: Problem 6
How does film boiling differ from nucleate boiling? Is the boiling heat flux necessarily higher in the stable film boiling regime than it is in the nucleate boiling regime?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider film condensation on the outer surfaces of four long tubes. For which orientation of the tubes will the condensation heat transfer coefficient be the highest: \((a)\) vertical, \((b)\) horizontal side by side, \((c)\) horizontal but in a vertical tier (directly on top of each other), or \((d)\) a horizontal stack of two tubes high and two tubes wide?
Steam condenses at \(50^{\circ} \mathrm{C}\) on the outer surface of a horizontal tube with an outer diameter of \(6 \mathrm{~cm}\). The outer surface of the tube is maintained at \(30^{\circ} \mathrm{C}\). The condensation heat transfer coefficient is (a) \(5493 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (b) \(5921 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (c) \(6796 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (d) \(7040 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (e) \(7350 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (For water, use $\rho_{l}=992.1 \mathrm{~kg} / \mathrm{m}^{3}, \mu_{l}=0.653 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\(, \)\left.k_{l}=0.631 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, c_{p l}=4179 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}, h_{f g} \oplus T_{\omega}=2383 \mathrm{~kJ} / \mathrm{kg}\right)$
Saturated steam at 1 atm condenses on a \(2-\mathrm{m}\)-high and 10 -m-wide vertical plate that is maintained at \(90^{\circ} \mathrm{C}\) by circulating cooling water through the other side. Determine (a) the rate of heat transfer by condensation to the plate, and (b) the rate at which the condensate drips off the plate at the bottom. Assume wavy-laminar flow. Is this a good assumption?
Heat transfer coefficients for a vapor condensing on a surface can be increased by promoting (a) film condensation (b) dropwise condensation (c) rolling action (d) none of them
When boiling a saturated liquid, one must be careful while increasing the heat flux to avoid burnout. Burnout occurs when the boiling transitions from _____ boiling. (a) convection to nucleate (b) convection to film (c) film to nucleate (d) nucleate to film (e) none of them
What do you think about this solution?
We value your feedback to improve our textbook solutions.