Chapter 10: Problem 3
What is the difference between evaporation and boiling?
Chapter 10: Problem 3
What is the difference between evaporation and boiling?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen a saturated vapor condenses on a vertical, isothermal flat plate in a continuous film, the rate of heat transfer is proportional to (a) \(\left(T_{s}-T_{\text {sat }}\right)^{1 / 4}\) (b) \(\left(T_{s}-T_{s a t}\right)^{1 / 2}\) (c) \(\left(T_{s}-T_{\text {sat }}\right)^{3 / 4}\) (d) \(\left(T_{s}-T_{\text {sat }}\right)\) (e) \(\left(T_{s}-T_{\text {sat }}\right)^{2 / 3}\)
Discuss some methods of enhancing pool boiling heat transfer permanently.
Water is boiled at \(250^{\circ} \mathrm{F}\) by a 2 -ft-long and \(0.25\)-in- diameter nickel-plated electric heating element maintained at $280^{\circ} \mathrm{F}\(. Determine \)(a)\( the boiling heat transfer coefficient, \)(b)$ the electric power consumed by the heating element, and \((c)\) the rate of evaporation of water.
What is the difference between pool boiling and flow boiling?
Four long ASTM A437 B4B stainless steel bolts are used to hold two separated plates together. The bolts are cylindrical, and each has a diameter of \(13 \mathrm{~mm}\). Between the two plates, the horizontal bolts are exposed to saturated propane vapor. The length of each bolt between the plates is \(15 \mathrm{~cm}\). The bolts are arranged in a vertical tier, and condensation of saturated propane occurs on the bolts at 344 \(\mathrm{kPa}\). The minimum temperature suitable for ASTM A437 B4B stainless steel bolts is \(-30^{\circ} \mathrm{C}\) (ASME Code for Process Piping, ASME B31.3-2014, Table A-2M). Determine the highest rate of condensation that can occur on the bolts, without cooling the bolts below the minimum suitable temperature set by the ASME Code for Process Piping.
What do you think about this solution?
We value your feedback to improve our textbook solutions.