Chapter 1: Problem 87
We often turn the fan on in summer to help us cool. Explain how a fan makes us feel cooler in the summer. Also explain why some people use ceiling fans also in winter.
Chapter 1: Problem 87
We often turn the fan on in summer to help us cool. Explain how a fan makes us feel cooler in the summer. Also explain why some people use ceiling fans also in winter.
All the tools & learning materials you need for study success - in one app.
Get started for freeA soldering iron has a cylindrical tip of \(2.5 \mathrm{~mm}\) in diameter and \(20 \mathrm{~mm}\) in length. With age and usage, the tip has oxidized and has an emissivity of \(0.80\). Assuming that the average convection heat transfer coefficient over the soldering iron tip is \(25 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}\) and the surrounding air temperature is \(20^{\circ} \mathrm{C}\), determine the power required to maintain the tip at \(400^{\circ} \mathrm{C}\).
A series of ASME SA-193 carbon steel bolts are bolted to the upper surface of a metal plate. The bottom surface of the plate is subjected to a uniform heat flux of \(5 \mathrm{~kW} / \mathrm{m}^{2}\). The upper surface of the plate is exposed to ambient air with a temperature of \(30^{\circ} \mathrm{C}\) and a convection heat transfer coefficient of \(10 \mathrm{~W} / \mathrm{m}^{2}\). K. The ASME Boiler and Pressure Vessel Code (ASME BPVC.IV-2015, HF-300) limits the maximum allowable use temperature to \(260^{\circ} \mathrm{C}\) for the SA-193 bolts. Determine whether the use of these SA-193 bolts complies with the ASME code under these conditions. If the temperature of the bolts exceeds the maximum allowable use temperature of the ASME code, discuss a possible solution to lower the temperature of the bolts.
An engineer who is working on the heat transfer analysis of a house in English units needs the convection heat transfer coefficient on the outer surface of the house. But the only value he can find from his handbooks is $14 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$, which is in SI units. The engineer does not have a direct conversion factor between the two unit systems for the convection heat transfer coefficient. Using the conversion factors between \(\mathrm{W}\) and \(\mathrm{Btu} / \mathrm{h}, \mathrm{m}\) and \(\mathrm{ft}\), and \({ }^{\circ} \mathrm{C}\) and \({ }^{\circ} \mathrm{F}\), express the given convection heat transfer coefficient in Btu/h \(\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\). Answer: \(2.47\) Btu/h $\cdot \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$
A hollow spherical iron container with outer diameter \(20 \mathrm{~cm}\) and thickness \(0.2 \mathrm{~cm}\) is filled with iced water at $0^{\circ} \mathrm{C}\(. If the outer surface temperature is \)5^{\circ} \mathrm{C}$, determine the approximate rate of heat gain by the iced water in \(\mathrm{kW}\) and the rate at which ice melts in the container. The heat of fusion of water is \(333.7 \mathrm{~kJ} / \mathrm{kg}\). Treat the spherical shell as a plain wall, and use the outer area.
Using the conversion factors between W and Btu/h, \(\mathrm{m}\) and \(\mathrm{ft}\), and \(\mathrm{K}\) and \(\mathrm{R}\), express the Stefan-Boltzmann constant $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}^{4}\( in the English unit \)\mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot \mathrm{R}^{4}$.
What do you think about this solution?
We value your feedback to improve our textbook solutions.