Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Can a medium involve \((a)\) conduction and convection, (b) conduction and radiation, or (c) convection and radiation simultaneously? Give examples for the "yes" answers.

Short Answer

Expert verified
Provide examples for "yes" answers. Answer: Yes, a medium can involve (a) conduction and convection, (b) conduction and radiation, and (c) convection and radiation simultaneously. Examples include: (a) a pot of boiling water on a stove, (b) a car's metal surface under sunlight, and (c) the Earth's atmosphere warming up from solar radiation.

Step by step solution

01

Understanding Conduction, Convection, and Radiation

Conduction is the transfer of heat through a material without any obvious motion of the material. Convection is the transfer of heat by the actual motion of a fluid (liquid or gas), typically due to the difference in temperature between different parts of the fluid. Radiation is the transfer of heat through empty space via electromagnetic waves.
02

Conduction and Convection

A medium can involve conduction and convection simultaneously when heat is transferred in a fluid by the actual motion of the fluid and through the presence of a solid material within the fluid. For example, in a pot of boiling water on a stove, the stove heats the pot (a solid) by conduction through the metal, and the heat is then transferred from the metal into the water (a fluid) by convection currents.
03

Conduction and Radiation

A medium can involve conduction and radiation simultaneously when heat is transferred through a material, and from that material through empty space by electromagnetic waves. For example, when sunlight hits a car's metal surface, it heats the metal by radiation, and the heat is then conducted through the metal, causing the inside of the car to become warmer.
04

Convection and Radiation

A medium can involve convection and radiation simultaneously when heat is transferred in a fluid by its actual motion and through empty space by electromagnetic waves. For example, the Earth's atmosphere warms up by absorbing solar radiation, and the warm air near the Earth's surface rises due to convection while the cooler air moves down to replace it. In conclusion, a medium can involve (a) conduction and convection, (b) conduction and radiation, and (c) convection and radiation simultaneously. Examples include: (a) a pot of boiling water on a stove, (b) a car's metal surface under sunlight, and (c) the Earth's atmosphere warming up from solar radiation.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A solid plate, with a thickness of \(15 \mathrm{~cm}\) and a thermal conductivity of \(80 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), is being cooled at the upper surface by air. The air temperature is $10^{\circ} \mathrm{C}$, while the temperatures at the upper and lower surfaces of the plate are 50 and \(60^{\circ} \mathrm{C}\), respectively. Determine the convection heat transfer coefficient of air at the upper surface, and discuss whether the value is reasonable or not for forced convection of air.

A \(3-\mathrm{m}^{2}\) black surface at \(140^{\circ} \mathrm{C}\) is losing heat to the surrounding air at \(35^{\circ} \mathrm{C}\) by convection with a heat transfer coefficient of \(16 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\) and by radiation to the surrounding surfaces at \(15^{\circ} \mathrm{C}\). The total rate of heat loss from the surface is (a) \(5105 \mathrm{~W}\) (b) \(2940 \mathrm{~W}\) (c) \(3779 \mathrm{~W}\) (d) \(8819 \mathrm{~W}\) (e) \(5040 \mathrm{~W}\)

A person standing in a room loses heat to the air in the room by convection and to the surrounding surfaces by radiation. Both the air in the room and the surrounding surfaces are at \(20^{\circ} \mathrm{C}\). The exposed surface of the person is \(1.5 \mathrm{~m}^{2}\) and has an average temperature of \(32^{\circ} \mathrm{C}\) and an emissivity of \(0.90\). If the rates of heat transfer from the person by convection and by radiation are equal, the combined heat transfer coefficient is (a) \(0.008 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\) (b) \(3.0 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (c) \(5.5 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\) (d) \(8.3 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (e) \(10.9 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\)

A 40-cm-long, 800-W electric resistance heating element with diameter $0.5 \mathrm{~cm}\( and surface temperature \)120^{\circ} \mathrm{C}$ is immersed in \(75 \mathrm{~kg}\) of water initially at \(20^{\circ} \mathrm{C}\). Determine how long it will take for this heater to raise the water temperature to \(80^{\circ} \mathrm{C}\). Also, determine the convection heat transfer coefficients at the beginning and at the end of the heating process.

On a still, clear night, the sky appears to be a blackbody with an equivalent temperature of \(250 \mathrm{~K}\). What is the air temperature when a strawberry field cools to \(0^{\circ} \mathrm{C}\) and freezes if the heat transfer coefficient between the plants and air is $6 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$ because of a light breeze and the plants have an emissivity of \(0.9\) ? (a) \(14^{\circ} \mathrm{C}\) (b) \(7^{\circ} \mathrm{C}\) (c) \(3^{\circ} \mathrm{C}\) (d) \(0^{\circ} \mathrm{C}\) (e) \(-3^{\circ} \mathrm{C}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free