Chapter 1: Problem 35
Why do we characterize the heat conduction ability of insulators in terms of their apparent thermal conductivity instead of their ordinary thermal conductivity?
Chapter 1: Problem 35
Why do we characterize the heat conduction ability of insulators in terms of their apparent thermal conductivity instead of their ordinary thermal conductivity?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe critical heat flux (CHF) is a thermal limit at which a boiling crisis occurs whereby an abrupt rise in temperature causes overheating on a fuel rod surface that leads to damage. A cylindrical fuel rod \(2 \mathrm{~cm}\) in diameter is encased in a concentric tube and cooled by water. The fuel generates heat uniformly at a rate of \(150 \mathrm{MW} / \mathrm{m}^{3}\). The average temperature of the cooling water, sufficiently far from the fuel rod, is \(80^{\circ} \mathrm{C}\). The operating pressure of the cooling water is such that the surface temperature of the fuel rod must be kept below \(300^{\circ} \mathrm{C}\) to prevent the cooling water from reaching the critical heat flux. Determine the necessary convection heat transfer coefficient to prevent the critical heat flux from occurring.
Using the conversion factors between W and Btu/h, \(\mathrm{m}\) and \(\mathrm{ft}\), and \(\mathrm{K}\) and \(\mathrm{R}\), express the Stefan-Boltzmann constant $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}^{4}\( in the English unit \)\mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot \mathrm{R}^{4}$.
A 1000-W iron is left on an ironing board with its base exposed to the air at \(20^{\circ} \mathrm{C}\). The convection heat transfer coefficient between the base surface and the surrounding air is $35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. If the base has an emissivity of \)0.6$ and a surface area of \(0.02 \mathrm{~m}^{2}\), determine the temperature of the base of the iron. Answer: \(674^{\circ} \mathrm{C}\)
Water enters a pipe at \(20^{\circ} \mathrm{C}\) at a rate of $0.25 \mathrm{~kg} / \mathrm{s}\( and is heated to \)60^{\circ} \mathrm{C}$. The rate of heat transfer to the water is (a) \(10 \mathrm{~kW}\) (b) \(20.9 \mathrm{~kW}\) (c) \(41.8 \mathrm{~kW}\) (d) \(62.7 \mathrm{~kW}\) (e) \(167.2 \mathrm{~kW}\)
A solid plate, with a thickness of \(15 \mathrm{~cm}\) and a thermal conductivity of \(80 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), is being cooled at the upper surface by air. The air temperature is $10^{\circ} \mathrm{C}$, while the temperatures at the upper and lower surfaces of the plate are 50 and \(60^{\circ} \mathrm{C}\), respectively. Determine the convection heat transfer coefficient of air at the upper surface, and discuss whether the value is reasonable or not for forced convection of air.
What do you think about this solution?
We value your feedback to improve our textbook solutions.