Chapter 1: Problem 34
Why is the thermal conductivity of superinsulation orders of magnitude lower than the thermal conductivity of ordinary insulation?
Chapter 1: Problem 34
Why is the thermal conductivity of superinsulation orders of magnitude lower than the thermal conductivity of ordinary insulation?
All the tools & learning materials you need for study success - in one app.
Get started for freeA person standing in a room loses heat to the air in the room by convection and to the surrounding surfaces by radiation. Both the air in the room and the surrounding surfaces are at \(20^{\circ} \mathrm{C}\). The exposed surface of the person is \(1.5 \mathrm{~m}^{2}\) and has an average temperature of \(32^{\circ} \mathrm{C}\) and an emissivity of \(0.90\). If the rates of heat transfer from the person by convection and by radiation are equal, the combined heat transfer coefficient is (a) \(0.008 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\) (b) \(3.0 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (c) \(5.5 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\) (d) \(8.3 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (e) \(10.9 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\)
Consider a 3-m \(\times 3-\mathrm{m} \times 3-\mathrm{m}\) cubical furnace whose top and side surfaces closely approximate black surfaces at a temperature of \(1200 \mathrm{~K}\). The base surface has an emissivity of \(\varepsilon=0.7\), and is maintained at \(800 \mathrm{~K}\). Determine the net rate of radiation heat transfer to the base surface from the top and side surfaces.
The inner and outer surfaces of a \(4-\mathrm{m} \times 7-\mathrm{m}\) brick wall of thickness \(30 \mathrm{~cm}\) and thermal conductivity $0.69 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\( are maintained at temperatures of \)20^{\circ} \mathrm{C}\( and \)5^{\circ} \mathrm{C}$, respectively. Determine the rate of heat transfer through the wall in W.
A 1000-W iron is left on an ironing board with its base exposed to the air at \(20^{\circ} \mathrm{C}\). The convection heat transfer coefficient between the base surface and the surrounding air is $35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\(. If the base has an emissivity of \)0.6$ and a surface area of \(0.02 \mathrm{~m}^{2}\), determine the temperature of the base of the iron. Answer: \(674^{\circ} \mathrm{C}\)
What is stratification? Is it more likely to occur at places with low ceilings or places with high ceilings? How does it cause thermal discomfort for a room's occupants? How can stratification be prevented?
What do you think about this solution?
We value your feedback to improve our textbook solutions.