Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A 1-kW electric resistance heater in a room is turned on and kept on for $50 \mathrm{~min}$. The amount of energy transferred to the room by the heater is (a) \(1 \mathrm{~kJ}\) (b) \(50 \mathrm{~kJ}\) (c) \(3000 \mathrm{~kJ}\) (d) \(3600 \mathrm{~kJ}\) (e) \(6000 \mathrm{~kJ}\)

Short Answer

Expert verified
Choose the correct answer. (a) 1 kJ (b) 50 kJ (c) 3000 kJ (d) 3600 kJ (e) 6000 kJ Answer: (c) 3000 kJ

Step by step solution

01

Convert the power rating into watts

The power rating of the heater is given in kilowatts (kW). Let's convert it to watts (W): 1 kW = 1000 W So, the power rating of the heater is 1000 W.
02

Convert the time into seconds

The time for which the heater is turned on is given in minutes. Let's convert it to seconds: 50 minutes = 50 × 60 = 3000 seconds So, the heater is turned on for 3000 seconds.
03

Calculate the energy transferred

Now, we will use the energy formula (Energy = Power × Time) to calculate the energy transferred to the room: Energy = 1000 W × 3000 s = 3000000 J The energy transferred to the room is 3000000 J (joules). Let's convert it to kJ (kilojoules): 3000000 J = 3000 kJ
04

Match the answer with the given options

We found that the energy transferred to the room by the heater is 3000 kJ. Now let's match this value with the given options: (a) 1 kJ (b) 50 kJ (c) 3000 kJ (d) 3600 kJ (e) 6000 kJ The correct answer is (c) 3000 kJ.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Heat treatment is common in processing of semiconductor material. A 200 -mm- diameter silicon wafer with thickness of \(725 \mu \mathrm{m}\) is being heat treated in a vacuum chamber by infrared heat. The surrounding walls of the chamber have a uniform temperature of \(310 \mathrm{~K}\). The infrared heater provides an incident radiation flux of \(200 \mathrm{~kW} / \mathrm{m}^{2}\) on the upper surface of the wafer, and the emissivity and absorptivity of the wafer surface are 0.70. Using a pyrometer, the lower surface temperature of the wafer is measured to be \(1000 \mathrm{~K}\). Assuming there is no radiation exchange between the lower surface of the wafer and the surroundings, determine the upper surface temperature of the wafer. (Note: A pyrometer is a noncontacting device that intercepts and measures thermal radiation. This device can be used to determine the temperature of an object's surface.)

An electronic package in the shape of a sphere with an outer diameter of $100 \mathrm{~mm}$ is placed in a large laboratory room. The surface emissivity of the package can assume three different values \((0.2,0.25\), and \(0.3)\). The walls of the room are maintained at a constant temperature of $77 \mathrm{~K}$. The electronics in this package can only operate in the surface temperature range of $40^{\circ} \mathrm{C} \leq T_{s} \leq 85^{\circ} \mathrm{C}\(. Determine the range of power dissipation \)(\dot{W})$ for the electronic package over this temperature range for the three surface emissivity values \((\varepsilon)\). Plot the results in terms of \(\dot{W}(\mathrm{~W})\) vs. \(T_{s}\left({ }^{\circ} \mathrm{C}\right)\) for the three different values of emissivity over a surface temperature range of 40 to \(85^{\circ} \mathrm{C}\) with temperature increments of \(5^{\circ} \mathrm{C}\) (total of 10 data points for each \(\varepsilon\) value). Provide a computer- generated graph for the display of your results, and tabulate the data used for the graph. Comment on the results obtained.

Consider a 3-m \(\times 3-\mathrm{m} \times 3-\mathrm{m}\) cubical furnace whose top and side surfaces closely approximate black surfaces at a temperature of \(1200 \mathrm{~K}\). The base surface has an emissivity of \(\varepsilon=0.7\), and is maintained at \(800 \mathrm{~K}\). Determine the net rate of radiation heat transfer to the base surface from the top and side surfaces.

A 3 -m-internal-diameter spherical tank made of \(1-\mathrm{cm}\) thick stainless steel is used to store iced water at \(0^{\circ} \mathrm{C}\). The tank is located outdoors at \(25^{\circ} \mathrm{C}\). Assuming the entire steel tank to be at \(0^{\circ} \mathrm{C}\) and thus the thermal resistance of the tank to be negligible, determine \((a)\) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at \(0^{\circ} \mathrm{C}\) that melts during a 24 -h period. The heat of fusion of water at atmospheric pressure is \(h_{i f}=333.7 \mathrm{~kJ} / \mathrm{kg}\). The emissivity of the outer surface of the tank is \(0.75\), and the convection heat transfer coefficient on the outer surface can be taken to be $30 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Assume the average surrounding surface temperature for radiation exchange to be \(15^{\circ} \mathrm{C}\). Answers: (a) \(23.1 \mathrm{~kW}\), (b) \(5980 \mathrm{~kg}\)

Consider a house in Atlanta, Georgia, that is maintained at $22^{\circ} \mathrm{C}\( and has a total of \)20 \mathrm{~m}^{2}$ of window area. The windows are double-door type with wood frames and metal spacers and have a \(U\)-factor of \(2.5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (see Prob. 1-120 for the definition of \(U\)-factor). The winter average temperature of Atlanta is \(11.3^{\circ} \mathrm{C}\). Determine the average rate of heat loss through the windows in winter.

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free