Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Which expression is used to determine the heat flux for convection? (a) \(-k A \frac{d T}{d x}\) (b) \(-k \operatorname{grad} T\) (c) \(h\left(T_{2}-T_{1}\right)\) (d) \(\varepsilon \sigma T^{4}\) (e) None of them

Short Answer

Expert verified
a) -k A (dT/dx) b) -k grad T c) h(T2-T1) d) εσT^4 e) None of them Answer: c) h(T2-T1)

Step by step solution

01

Option (a) Analysis

The expression \(-k A \frac{d T}{d x}\) represents heat flux due to conduction in a solid, where \(k\) is the thermal conductivity, \(A\) is the area through which heat is transferred, and \(\frac{d T}{d x}\) is the temperature gradient. Thus, this option is not the correct answer.
02

Option (b) Analysis

The expression \(-k \operatorname{grad} T\) is a more general form of heat conduction which includes the temperature gradient in all three dimensions. Just like option (a), it represents heat transfer due to conduction, and therefore, is not the correct answer.
03

Option (c) Analysis

The expression \(h\left(T_{2}-T_{1}\right)\) represents heat flux due to convection. Here, \(h\) is the convection heat transfer coefficient, and \(T_{2}-T_{1}\) is the temperature difference between the fluid medium and the surface in contact. This option is the correct answer.
04

Option (d) Analysis

The expression \(\varepsilon \sigma T^{4}\) is used for the heat transfer rate due to radiation, where \(\varepsilon\) is the emissivity of the surface, \(\sigma\) is the Stefan-Boltzmann constant, and \(T\) is the absolute temperature of the radiating surface. This option does not represent convection heat transfer; thus, it's not the correct answer.
05

Option (e) Analysis

The statement "None of them" could be a correct answer if none of the prior expressions represented heat flux due to convection. However, as we have identified option (c) as the correct expression, this option is incorrect.
06

Final Answer

The correct expression to determine the heat flux for convection is (c) \(h\left(T_{2}-T_{1}\right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Heat is lost through a brick wall $(k=0.72 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(, which is \)4 \mathrm{~m}\( long, \)3 \mathrm{~m}\( wide, and \)25 \mathrm{~cm}\( thick at a rate of \)500 \mathrm{~W}$. If the inner surface of the wall is at \(22^{\circ} \mathrm{C}\), the temperature at the midplane of the wall is (a) \(0^{\circ} \mathrm{C}\) (b) \(7.5^{\circ} \mathrm{C}\) (c) \(11.0^{\circ} \mathrm{C}\) (d) \(14.8^{\circ} \mathrm{C}\) (e) \(22^{\circ} \mathrm{C}\)

A 3 -m-internal-diameter spherical tank made of \(1-\mathrm{cm}\) thick stainless steel is used to store iced water at \(0^{\circ} \mathrm{C}\). The tank is located outdoors at \(25^{\circ} \mathrm{C}\). Assuming the entire steel tank to be at \(0^{\circ} \mathrm{C}\) and thus the thermal resistance of the tank to be negligible, determine \((a)\) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at \(0^{\circ} \mathrm{C}\) that melts during a 24 -h period. The heat of fusion of water at atmospheric pressure is \(h_{i f}=333.7 \mathrm{~kJ} / \mathrm{kg}\). The emissivity of the outer surface of the tank is \(0.75\), and the convection heat transfer coefficient on the outer surface can be taken to be $30 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. Assume the average surrounding surface temperature for radiation exchange to be \(15^{\circ} \mathrm{C}\). Answers: (a) \(23.1 \mathrm{~kW}\), (b) \(5980 \mathrm{~kg}\)

What is a blackbody? How do real bodies differ from blackbodies?

Water enters a pipe at \(20^{\circ} \mathrm{C}\) at a rate of $0.25 \mathrm{~kg} / \mathrm{s}\( and is heated to \)60^{\circ} \mathrm{C}$. The rate of heat transfer to the water is (a) \(10 \mathrm{~kW}\) (b) \(20.9 \mathrm{~kW}\) (c) \(41.8 \mathrm{~kW}\) (d) \(62.7 \mathrm{~kW}\) (e) \(167.2 \mathrm{~kW}\)

On a still, clear night, the sky appears to be a blackbody with an equivalent temperature of \(250 \mathrm{~K}\). What is the air temperature when a strawberry field cools to \(0^{\circ} \mathrm{C}\) and freezes if the heat transfer coefficient between the plants and air is $6 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$ because of a light breeze and the plants have an emissivity of \(0.9\) ? (a) \(14^{\circ} \mathrm{C}\) (b) \(7^{\circ} \mathrm{C}\) (c) \(3^{\circ} \mathrm{C}\) (d) \(0^{\circ} \mathrm{C}\) (e) \(-3^{\circ} \mathrm{C}\)

See all solutions

Recommended explanations on Physics Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free