Chapter 1: Problem 14
What are the mechanisms of energy transfer to a closed system? How is heat transfer distinguished from the other forms of energy transfer?
Chapter 1: Problem 14
What are the mechanisms of energy transfer to a closed system? How is heat transfer distinguished from the other forms of energy transfer?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a 20-cm-thick granite wall with a thermal conductivity of $2.79 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The temperature of the left surface is held constant at \(50^{\circ} \mathrm{C}\), whereas the right face is exposed to a flow of \(22^{\circ} \mathrm{C}\) air with a convection heat transfer coefficient of \(15 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Neglecting heat transfer by radiation, find the right wall surface temperature and the heat flux through the wall.
A boiler supplies hot water to a commercial dishwasher through a pipe with a surface temperature of \(50^{\circ} \mathrm{C}\). The hot water exits the boiler at \(95^{\circ} \mathrm{C}\), and it is transported in a pipe that has an outside diameter of \(20 \mathrm{~mm}\). The distance between the boiler and the dishwasher is \(20 \mathrm{~m}\). The section of the pipe between the boiler and the dishwater is exposed to convection with a heat transfer coefficient of \(100 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}\) at an ambient temperature of \(20^{\circ} \mathrm{C}\). The hot water flows steadily in the pipe at $60 \mathrm{~g} / \mathrm{s}\(, and its average specific heat is \)4.20 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$. The National Sanitation Foundation standard for commercial warewashing equipment (ANSI/NSF 3) requires the final rinse water temperature to be at least \(82^{\circ} \mathrm{C}\). Under these conditions, does the hot water entering the dishwasher meet the ANSI/NSF 3 standard? If not, discuss some possible ways to increase the water temperature entering the dishwasher.
An electric current of 5 A passing through a resistor has a measured voltage of \(6 \mathrm{~V}\) across the resistor. The resistor is cylindrical with a diameter of \(2.5 \mathrm{~cm}\) and length of \(15 \mathrm{~cm}\). The resistor has a uniform temperature of \(90^{\circ} \mathrm{C}\), and the room air temperature is \(20^{\circ} \mathrm{C}\). Assuming that heat transfer by radiation is negligible, determine the heat transfer coefficient by convection.
The critical heat flux (CHF) is a thermal limit at which a boiling crisis occurs whereby an abrupt rise in temperature causes overheating on a fuel rod surface that leads to damage. A cylindrical fuel rod \(2 \mathrm{~cm}\) in diameter is encased in a concentric tube and cooled by water. The fuel generates heat uniformly at a rate of \(150 \mathrm{MW} / \mathrm{m}^{3}\). The average temperature of the cooling water, sufficiently far from the fuel rod, is \(80^{\circ} \mathrm{C}\). The operating pressure of the cooling water is such that the surface temperature of the fuel rod must be kept below \(300^{\circ} \mathrm{C}\) to prevent the cooling water from reaching the critical heat flux. Determine the necessary convection heat transfer coefficient to prevent the critical heat flux from occurring.
A person standing in a room loses heat to the air in the room by convection and to the surrounding surfaces by radiation. Both the air in the room and the surrounding surfaces are at \(20^{\circ} \mathrm{C}\). The exposed surface of the person is \(1.5 \mathrm{~m}^{2}\) and has an average temperature of \(32^{\circ} \mathrm{C}\) and an emissivity of \(0.90\). If the rates of heat transfer from the person by convection and by radiation are equal, the combined heat transfer coefficient is (a) \(0.008 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\) (b) \(3.0 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (c) \(5.5 \mathrm{~W} / \mathrm{m}^{2}, \mathrm{~K}\) (d) \(8.3 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) (e) \(10.9 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.