Chapter 1: Problem 139
Which expression is used to determine the heat flux for conduction? (a) \(-k A \frac{d T}{d x}\) (b) \(-k \operatorname{grad} T\) (c) \(h\left(T_{2}-T_{1}\right)\) (d) \(\varepsilon \sigma T^{4}\) (e) None of them
Chapter 1: Problem 139
Which expression is used to determine the heat flux for conduction? (a) \(-k A \frac{d T}{d x}\) (b) \(-k \operatorname{grad} T\) (c) \(h\left(T_{2}-T_{1}\right)\) (d) \(\varepsilon \sigma T^{4}\) (e) None of them
All the tools & learning materials you need for study success - in one app.
Get started for freeThe heat generated in the circuitry on the surface of a silicon chip $(k=130 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})$ is conducted to the ceramic substrate to which it is attached. The chip is $6 \mathrm{~mm} \times 6 \mathrm{~mm}\( in size and \)0.5 \mathrm{~mm}\( thick and dissipates \)3 \mathrm{~W}\( of power. Disregarding any heat transfer through the \)0.5$-mm- high side surfaces, determine the temperature difference between the front and back surfaces of the chip in steady operation.
Conduct this experiment to determine the combined heat transfer coefficient between an incandescent lightbulb and the surrounding air and surfaces using a 60 -W lightbulb. You will need a thermometer, which can be purchased in a hardware store, and metal glue. You will also need a piece of string and a ruler to calculate the surface area of the lightbulb. First, measure the air temperature in the room, and then glue the tip of the thermocouple wire of the thermometer to the glass of the lightbulb. Turn the light on and wait until the temperature reading stabilizes. The temperature reading will give the surface temperature of the lightbulb. Assuming 10 percent of the rated power of the bulb is converted to light and is transmitted by the glass, calculate the heat transfer coefficient from Newton's law of cooling.
A 2-in-diameter spherical ball whose surface is maintained at a temperature of \(170^{\circ} \mathrm{F}\) is suspended in the middle of a room at $70^{\circ} \mathrm{F}\(. If the convection heat transfer coefficient is \)15 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}{ }^{2}{ }^{\circ} \mathrm{F}$ and the emissivity of the surface is \(0.8\), determine the total rate of heat transfer from the ball.
Consider a 20-cm-thick granite wall with a thermal conductivity of $2.79 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The temperature of the left surface is held constant at \(50^{\circ} \mathrm{C}\), whereas the right face is exposed to a flow of \(22^{\circ} \mathrm{C}\) air with a convection heat transfer coefficient of \(15 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Neglecting heat transfer by radiation, find the right wall surface temperature and the heat flux through the wall.
A boiler supplies hot water to a commercial dishwasher through a pipe with a surface temperature of \(50^{\circ} \mathrm{C}\). The hot water exits the boiler at \(95^{\circ} \mathrm{C}\), and it is transported in a pipe that has an outside diameter of \(20 \mathrm{~mm}\). The distance between the boiler and the dishwasher is \(20 \mathrm{~m}\). The section of the pipe between the boiler and the dishwater is exposed to convection with a heat transfer coefficient of \(100 \mathrm{~W} / \mathrm{m}^{2}\). \(\mathrm{K}\) at an ambient temperature of \(20^{\circ} \mathrm{C}\). The hot water flows steadily in the pipe at $60 \mathrm{~g} / \mathrm{s}\(, and its average specific heat is \)4.20 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$. The National Sanitation Foundation standard for commercial warewashing equipment (ANSI/NSF 3) requires the final rinse water temperature to be at least \(82^{\circ} \mathrm{C}\). Under these conditions, does the hot water entering the dishwasher meet the ANSI/NSF 3 standard? If not, discuss some possible ways to increase the water temperature entering the dishwasher.
What do you think about this solution?
We value your feedback to improve our textbook solutions.