Chapter 1: Problem 118
Why is it necessary to ventilate buildings? What is the effect of ventilation on energy consumption for heating in winter and for cooling in summer? Is it a good idea to keep the bathroom fans on all the time? Explain.
Chapter 1: Problem 118
Why is it necessary to ventilate buildings? What is the effect of ventilation on energy consumption for heating in winter and for cooling in summer? Is it a good idea to keep the bathroom fans on all the time? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhy is the metabolic rate of women, in general, lower than that of men? What is the effect of clothing on the environmental temperature that feels comfortable?
A concrete wall with a surface area of \(20 \mathrm{~m}^{2}\) and a thickness of \(0.30 \mathrm{~m}\) separates conditioned room air from ambient air. The temperature of the inner surface of the wall \(\left(T_{1}\right)\) is maintained at \(25^{\circ} \mathrm{C}\). (a) Determine the heat loss \(\dot{Q}(\mathrm{~W})\) through the concrete wall for three thermal conductivity values of \(0.75,1\), and $1.25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ and outer wall surface temperatures of \(T_{2}=-15,-10,-5,0,5,10,15,20,25,30\), and \(38^{\circ} \mathrm{C}\) (a total of 11 data points for each thermal conductivity value). Tabulate the results for all three cases in one table. Also provide a computer-generated graph [Heat loss, \(\dot{Q}(\mathrm{~W})\) vs. Outside wall temperature, $\left.T_{2}\left({ }^{\circ} \mathrm{C}\right)\right]$ for the display of your results. The results for all three cases should be plotted on the same graph. (b) Discuss your results for the three cases.
Eggs with a mass of \(0.15 \mathrm{~kg}\) per egg and a specific heat of $3.32 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ are cooled from \(32^{\circ} \mathrm{C}\) to \(10^{\circ} \mathrm{C}\) at a rate of 300 eggs per minute. The rate of heat removal from the eggs is (a) \(11 \mathrm{~kW}\) (b) \(80 \mathrm{~kW}\) (c) \(25 \mathrm{~kW}\) (d) \(657 \mathrm{~kW}\) (e) \(55 \mathrm{~kW}\)
Consider a 20-cm-thick granite wall with a thermal conductivity of $2.79 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$. The temperature of the left surface is held constant at \(50^{\circ} \mathrm{C}\), whereas the right face is exposed to a flow of \(22^{\circ} \mathrm{C}\) air with a convection heat transfer coefficient of \(15 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Neglecting heat transfer by radiation, find the right wall surface temperature and the heat flux through the wall.
A cold bottled drink ( $\left.m=2.5 \mathrm{~kg}, c_{p}=4200 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\( at \)5^{\circ} \mathrm{C}$ is left on a table in a room. The average temperature of the drink is observed to rise to \(15^{\circ} \mathrm{C}\) in \(30 \mathrm{~min}\). The average rate of heat transfer to the drink is (a) \(23 \mathrm{~W}\) (b) \(29 \mathrm{~W}\) (c) \(58 \mathrm{~W}\) (d) \(88 \mathrm{~W}\) (e) \(122 \mathrm{~W}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.