Chapter 1: Problem 114
Why is the metabolic rate of women, in general, lower than that of men? What is the effect of clothing on the environmental temperature that feels comfortable?
Chapter 1: Problem 114
Why is the metabolic rate of women, in general, lower than that of men? What is the effect of clothing on the environmental temperature that feels comfortable?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a flat-plate solar collector placed horizontally on the flat roof of a house. The collector is \(5 \mathrm{ft}\) wide and \(15 \mathrm{ft}\) long, and the average temperature of the exposed surface of the collector is \(100^{\circ} \mathrm{F}\). The emissivity of the exposed surface of the collector is \(0.9\). Determine the rate of heat loss from the collector by convection and radiation during a calm day when the ambient air temperature is \(70^{\circ} \mathrm{F}\) and the effective sky temperature for radiation exchange is \(50^{\circ} \mathrm{F}\). Take the convection heat transfer coefficient on the exposed surface to be $2.5 \mathrm{Btu} / \mathrm{h} . \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$.
The critical heat flux (CHF) is a thermal limit at which a boiling crisis occurs whereby an abrupt rise in temperature causes overheating on a fuel rod surface that leads to damage. A cylindrical fuel rod \(2 \mathrm{~cm}\) in diameter is encased in a concentric tube and cooled by water. The fuel generates heat uniformly at a rate of \(150 \mathrm{MW} / \mathrm{m}^{3}\). The average temperature of the cooling water, sufficiently far from the fuel rod, is \(80^{\circ} \mathrm{C}\). The operating pressure of the cooling water is such that the surface temperature of the fuel rod must be kept below \(300^{\circ} \mathrm{C}\) to prevent the cooling water from reaching the critical heat flux. Determine the necessary convection heat transfer coefficient to prevent the critical heat flux from occurring.
Consider two houses that are identical except that the walls are built using bricks in one house and wood in the other. If the walls of the brick house are twice as thick, which house do you think will be more energy efficient?
Solve this system of three equations with three unknowns using appropriate software: $$ \begin{aligned} 2 x-y+z &=5 \\ 3 x^{2}+2 y &=z+2 \\ x y+2 z &=8 \end{aligned} $$
A room is heated by a \(1.2-\mathrm{kW}\) electric resistance heater whose wires have a diameter of \(4 \mathrm{~mm}\) and a total length of \(3.4 \mathrm{~m}\). The air in the room is at \(23^{\circ} \mathrm{C}\), and the interior surfaces of the room are at \(17^{\circ} \mathrm{C}\). The convection heat transfer coefficient on the surface of the wires is $8 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}$. If the rates of heat transfer from the wires to the room by convection and by radiation are equal, the surface temperature of the wire is (a) \(3534^{\circ} \mathrm{C}\) (b) \(1778^{\circ} \mathrm{C}\) (c) \(1772^{\circ} \mathrm{C}\) (d) \(98^{\circ} \mathrm{C}\) (e) \(25^{\circ} \mathrm{C}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.