Chapter 1: Problem 113
What is metabolism? What is the range of metabolic rate for an average man? Why are we interested in the metabolic rate of the occupants of a building when we deal with heating and air conditioning?
Chapter 1: Problem 113
What is metabolism? What is the range of metabolic rate for an average man? Why are we interested in the metabolic rate of the occupants of a building when we deal with heating and air conditioning?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe inner and outer glasses of a 4-ft \(\times 4\)-ft double-pane window are at \(60^{\circ} \mathrm{F}\) and \(48^{\circ} \mathrm{F}\), respectively. If the \(0.25\)-in space between the two glasses is filled with still air, determine the rate of heat transfer through the window. Answer. $131 \mathrm{Btu} / \mathrm{h}$
Heat is lost through a brick wall $(k=0.72 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\(, which is \)4 \mathrm{~m}\( long, \)3 \mathrm{~m}\( wide, and \)25 \mathrm{~cm}\( thick at a rate of \)500 \mathrm{~W}$. If the inner surface of the wall is at \(22^{\circ} \mathrm{C}\), the temperature at the midplane of the wall is (a) \(0^{\circ} \mathrm{C}\) (b) \(7.5^{\circ} \mathrm{C}\) (c) \(11.0^{\circ} \mathrm{C}\) (d) \(14.8^{\circ} \mathrm{C}\) (e) \(22^{\circ} \mathrm{C}\)
Consider a sealed 20-cm-high electronic box whose base dimensions are $40 \mathrm{~cm} \times 40 \mathrm{~cm}$ placed in a vacuum chamber. The emissivity of the outer surface of the box is \(0.95\). If the electronic components in the box dissipate a total of \(100 \mathrm{~W}\) of power and the outer surface temperature of the box is not to exceed \(55^{\circ} \mathrm{C}\), determine the temperature at which the surrounding surfaces must be kept if this box is to be cooled by radiation alone. Assume the heat transfer from the bottom surface of the box to the stand to be negligible.
Consider a flat-plate solar collector placed horizontally on the flat roof of a house. The collector is \(5 \mathrm{ft}\) wide and \(15 \mathrm{ft}\) long, and the average temperature of the exposed surface of the collector is \(100^{\circ} \mathrm{F}\). The emissivity of the exposed surface of the collector is \(0.9\). Determine the rate of heat loss from the collector by convection and radiation during a calm day when the ambient air temperature is \(70^{\circ} \mathrm{F}\) and the effective sky temperature for radiation exchange is \(50^{\circ} \mathrm{F}\). Take the convection heat transfer coefficient on the exposed surface to be $2.5 \mathrm{Btu} / \mathrm{h} . \mathrm{ft}^{2}{ }^{\circ} \mathrm{F}$.
Two surfaces, one highly polished and the other heavily oxidized, are found to be emitting the same amount of energy per unit area. The highly polished surface has an emissivity of \(0.1\) at \(1070^{\circ} \mathrm{C}\), while the emissivity of the heavily oxidized surface is \(0.78\). Determine the temperature of the heavily oxidized surface.
What do you think about this solution?
We value your feedback to improve our textbook solutions.