Chapter 8: Problem 89
Hot air at \(60^{\circ} \mathrm{C}\) leaving the furnace of a house enters a 12-m-long section of a sheet metal duct of rectangular cross section \(20 \mathrm{~cm} \times 20 \mathrm{~cm}\) at an average velocity of \(4 \mathrm{~m} / \mathrm{s}\). The thermal resistance of the duct is negligible, and the outer surface of the duct, whose emissivity is \(0.3\), is exposed to the cold air at \(10^{\circ} \mathrm{C}\) in the basement, with a convection heat transfer coefficient of \(10 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Taking the walls of the basement to be at \(10^{\circ} \mathrm{C}\) also, determine \((a)\) the temperature at which the hot air will leave the basement and \((b)\) the rate of heat loss from the hot air in the duct to the basement. Evaluate air properties at a bulk mean temperature of \(50^{\circ} \mathrm{C}\). Is this a good assumption?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.