A fluid \(\left(\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mu=1.4 \times 10^{-3}
\mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\right.\), \(c_{p}=4.2 \mathrm{~kJ} /
\mathrm{kg} \cdot \mathrm{K}\), and \(\left.k=0.58 \mathrm{~W} / \mathrm{m}
\cdot \mathrm{K}\right)\) flows with an average velocity of \(0.3 \mathrm{~m} /
\mathrm{s}\) through a \(14-\mathrm{m}\) long tube with inside diameter of \(0.01
\mathrm{~m}\). Heat is uniformly added to the entire tube at the rate of \(1500
\mathrm{~W} / \mathrm{m}^{2}\). Determine \((a)\) the value of convection heat
transfer coefficient at the exit, \((b)\) the value of \(T_{s}-T_{m}\), and (c)
the value of \(T_{e}-T_{i}\).