Chapter 8: Problem 147
Air at \(10^{\circ} \mathrm{C}\) enters an \(18-\mathrm{m}\)-long rectangular duct of cross section \(0.15 \mathrm{~m} \times 0.20 \mathrm{~m}\) at a velocity of \(4.5 \mathrm{~m} / \mathrm{s}\). The duct is subjected to uniform radiation heating throughout the surface at a rate of \(400 \mathrm{~W} / \mathrm{m}^{3}\). The wall temperature at the exit of the duct is (a) \(58.8^{\circ} \mathrm{C}\) (b) \(61.9^{\circ} \mathrm{C}\) (c) \(64.6^{\circ} \mathrm{C}\) (d) \(69.1^{\circ} \mathrm{C}\) (e) \(75.5^{\circ} \mathrm{C}\) (For air, use \(k=0.02551 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=0.7296, v=1.562 \times\) \(10^{-5} \mathrm{~m}^{2} / \mathrm{s}, c_{p}=1007 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}, \rho=1.184 \mathrm{~kg} / \mathrm{m}^{3}\).)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.