Chapter 8: Problem 144
Air \(\left(c_{p}=1000 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) enters a 20 -cm-diameter and 19-m-long underwater duct at \(50^{\circ} \mathrm{C}\) and \(1 \mathrm{~atm}\) at an average velocity of \(7 \mathrm{~m} / \mathrm{s}\) and is cooled by the water outside. If the average heat transfer coefficient is \(35 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) and the tube temperature is nearly equal to the water temperature of \(5{ }^{\circ} \mathrm{C}\), the exit temperature of air is (a) \(8^{\circ} \mathrm{C}\) (b) \(13^{\circ} \mathrm{C}\) (c) \(18^{\circ} \mathrm{C}\) (d) \(28^{\circ} \mathrm{C}\) (e) \(37^{\circ} \mathrm{C}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.