Chapter 7: Problem 90
In an experiment, the temperature of a hot air stream is to be measured by a thermocouple with a spherical junction. Due to the nature of this experiment, the response time of the thermocouple to register 99 percent of the initial temperature difference must be within \(5 \mathrm{~s}\). The properties of the thermocouple junction are \(k=35 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), \(\rho=8500 \mathrm{~kg} / \mathrm{m}^{3}\), and \(c_{p}=320 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\). The hot air has a free stream velocity and temperature of \(3 \mathrm{~m} / \mathrm{s}\) and \(140^{\circ} \mathrm{C}\), respectively. If the initial temperature of the thermocouple junction is \(20^{\circ} \mathrm{C}\), determine the thermocouple junction diameter that would satisfy the required response time of \(5 \mathrm{~s}\). Hint: Use the lumped system analysis to determine the time required for the thermocouple to register 99 percent of the initial temperature difference (verify application of this method to this problem).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.