Chapter 7: Problem 82
Exposure to high concentration of gaseous ammonia can cause lung damage. To prevent gaseous ammonia from leaking out, ammonia is transported in its liquid state through a pipe \(\left(k=25 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, D_{i, \text { pipe }}=2.5 \mathrm{~cm}\right.\), \(D_{o, \text { pipe }}=4 \mathrm{~cm}\), and \(\left.L=10 \mathrm{~m}\right)\). Since liquid ammonia has a normal boiling point of \(-33.3^{\circ} \mathrm{C}\), the pipe needs to be properly insulated to prevent the surrounding heat from causing the ammonia to boil. The pipe is situated in a laboratory, where air at \(20^{\circ} \mathrm{C}\) is blowing across it with a velocity of \(7 \mathrm{~m} / \mathrm{s}\). The convection heat transfer coefficient of the liquid ammonia is \(100 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Calculate the minimum insulation thickness for the pipe using a material with \(k=0.75 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) to keep the liquid ammonia flowing at an average temperature of \(-35^{\circ} \mathrm{C}\), while maintaining the insulated pipe outer surface temperature at \(10^{\circ} \mathrm{C}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.