Chapter 7: Problem 57
Air is flowing in parallel over the upper surface of a flat plate with a length of \(4 \mathrm{~m}\). The first half of the plate length, from the leading edge, has a constant surface temperature of \(50^{\circ} \mathrm{C}\). The second half of the plate length is subjected to a uniform heat flux of \(86 \mathrm{~W} / \mathrm{m}^{2}\). The air has a free stream velocity and temperature of \(2 \mathrm{~m} / \mathrm{s}\) and \(10^{\circ} \mathrm{C}\), respectively. Determine the local convection heat transfer coefficients at \(1 \mathrm{~m}\) and \(3 \mathrm{~m}\) from the leading edge. Evaluate the air properties at a film temperature of \(30^{\circ} \mathrm{C}\). Is the film temperature \(T_{f}=30^{\circ} \mathrm{C}\) applicable at \(x=3 \mathrm{~m}\) ?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.