Chapter 7: Problem 142
Wind at \(30^{\circ} \mathrm{C}\) flows over a \(0.5\)-m-diameter spherical tank containing iced water at \(0^{\circ} \mathrm{C}\) with a velocity of \(25 \mathrm{~km} / \mathrm{h}\). If the tank is thin-shelled with a high thermal conductivity material, the rate at which ice melts is (a) \(4.78 \mathrm{~kg} / \mathrm{h} \quad\) (b) \(6.15 \mathrm{~kg} / \mathrm{h}\) (c) \(7.45 \mathrm{~kg} / \mathrm{h}\) (d) \(11.8 \mathrm{~kg} / \mathrm{h}\) (e) \(16.0 \mathrm{~kg} / \mathrm{h}\) (Take \(h_{i f}=333.7 \mathrm{~kJ} / \mathrm{kg}\), and use the following for air: \(k=\) \(0.02588 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \operatorname{Pr}=0.7282, v=1.608 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}, \mu_{\infty}=\) \(\left.1.872 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}, \mu_{\mathrm{s}}=1.729 \times 10^{-5} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.