Chapter 7: Problem 128
A 3-m-internal-diameter spherical tank made of 1 -cm-thick stainless steel \((k=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) is used to store iced water at \(0^{\circ} \mathrm{C}\). The tank is located outdoors at \(30^{\circ} \mathrm{C}\) and is subjected to winds at \(25 \mathrm{~km} / \mathrm{h}\). Assuming the entire steel tank to be at \(0^{\circ} \mathrm{C}\) and thus its thermal resistance to be negligible, determine (a) the rate of heat transfer to the iced water in the tank and \((b)\) the amount of ice at \(0^{\circ} \mathrm{C}\) that melts during a 24-h period. The heat of fusion of water at atmospheric pressure is \(h_{i f}=333.7 \mathrm{~kJ} / \mathrm{kg}\). Disregard any heat transfer by radiation.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.