Chapter 6: Problem 21
Air at \(5^{\circ} \mathrm{C}\), with a convection heat transfer coefficient of \(30 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), is used for cooling metal plates coming out of a heat treatment oven at an initial temperature of \(300^{\circ} \mathrm{C}\). The plates \((k=180 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), \(\rho=2800 \mathrm{~kg} / \mathrm{m}^{3}\), and \(c_{p}=880 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\) ) have a thickness of \(10 \mathrm{~mm}\). Using EES (or other) software, determine the effect of cooling time on the temperature gradient in the metal plates at the surface. By varying the cooling time from 0 to \(3000 \mathrm{~s}\), plot the temperature gradient in the plates at the surface as a function of cooling time. Hint: Use the lumped system analysis to calculate the plate surface temperature. Make sure to verify the application of this method to this problem.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.