Chapter 5: Problem 146
A hot brass plate is having its upper surface cooled by impinging jet of air at temperature of \(15^{\circ} \mathrm{C}\) and convection heat transfer coefficient of \(220 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The \(10-\mathrm{cm}-\) thick brass plate \(\left(\rho=8530 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=380 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}, k=\right.\) \(110 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and \(\left.\alpha=33.9 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)\) had a uniform initial temperature of \(650^{\circ} \mathrm{C}\), and the lower surface of the plate is insulated. Using a uniform nodal spacing of \(\Delta x=\) \(2.5 \mathrm{~cm}\) determine \((a)\) the explicit finite difference equations, (b) the maximum allowable value of the time step, \((c)\) the temperature at the center plane of the brass plate after 1 minute of cooling, and \((d)\) compare the result in \((c)\) with the approximate analytical solution from Chapter 4 .
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.