Chapter 5: Problem 119
Quench hardening is a mechanical process in which the ferrous metals or alloys are first heated and then quickly cooled down to improve their physical properties and avoid phase transformation. Consider a \(40 \mathrm{~cm} \times 20 \mathrm{~cm}\) block of copper alloy \(\left(k=120 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \alpha=3.91 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)\) being heated uniformly until it reaches a temperature of \(800^{\circ} \mathrm{C}\). It is then suddenly immersed into the water bath maintained at \(15^{\circ} \mathrm{C}\) with \(h=100 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) for quenching process. However, the upper surface of the metal is not submerged in the water and is exposed to air at \(15^{\circ} \mathrm{C}\) with a convective heat transfer coefficient of \(10 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Using an explicit finite difference formulation, calculate the temperature distribution in the copper alloy block after \(10 \mathrm{~min}\) have elapsed using \(\Delta t=10 \mathrm{~s}\) and a uniform mesh size of \(\Delta x=\Delta y=10 \mathrm{~cm}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.