Chapter 4: Problem 82
Under what conditions can a plane wall be treated as a semi-infinite medium?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 4: Problem 82
Under what conditions can a plane wall be treated as a semi-infinite medium?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn a production facility, large plates made of stainless steel \(\left(k=15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, \alpha=3.91 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)\) of \(40 \mathrm{~cm}\) thickness are taken out of an oven at a uniform temperature of \(750^{\circ} \mathrm{C}\). The plates are placed in a water bath that is kept at a constant temperature of \(20^{\circ} \mathrm{C}\) with a heat transfer coefficient of \(600 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The time it takes for the surface temperature of the plates to drop to \(100^{\circ} \mathrm{C}\) is (a) \(0.28 \mathrm{~h}\) (b) \(0.99 \mathrm{~h}\) (c) \(2.05 \mathrm{~h}\) (d) \(3.55 \mathrm{~h}\) (e) \(5.33 \mathrm{~h}\)
A large heated steel block \(\left(\rho=7832 \mathrm{~kg} / \mathrm{m}^{3}, c_{p}=\right.\) \(434 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}, k=63.9 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and \(\left.\alpha=18.8 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}\right)\) is allowed to cool in a room at \(25^{\circ} \mathrm{C}\). The steel block has an initial temperature of \(450^{\circ} \mathrm{C}\) and the convection heat transfer coefficient is \(25 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Assuming that the steel block can be treated as a quarter-infinite medium, determine the temperature at the edge of the steel block after 10 minutes of cooling.
Carbon steel balls ( \(\rho=7830 \mathrm{~kg} / \mathrm{m}^{3}, k=64 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), \(\left.c_{p}=434 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) initially at \(150^{\circ} \mathrm{C}\) are quenched in an oil bath at \(20^{\circ} \mathrm{C}\) for a period of 3 minutes. If the balls have a diameter of \(5 \mathrm{~cm}\) and the convection heat transfer coefficient is \(450 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). The center temperature of the balls after quenching will be (Hint: Check the Biot number). (a) \(27.4^{\circ} \mathrm{C}\) (b) \(143^{\circ} \mathrm{C}\) (c) \(12.7^{\circ} \mathrm{C}\) (d) \(48.2^{\circ} \mathrm{C}\) (e) \(76.9^{\circ} \mathrm{C}\)
Layers of 6-in-thick meat slabs \(\left(k=0.26 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}\right.\) and \(\left.\alpha=1.4 \times 10^{-6} \mathrm{ft}^{2} / \mathrm{s}\right)\) initially at a uniform temperature of \(50^{\circ} \mathrm{F}\) are cooled by refrigerated air at \(23^{\circ} \mathrm{F}\) to a temperature of \(36^{\circ} \mathrm{F}\) at their center in \(12 \mathrm{~h}\). Estimate the average heat transfer coefficient during this cooling process. Solve this problem using the Heisler charts. Answer: \(1.5 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2} \cdot{ }^{\circ} \mathrm{F}\)
Consider a hot semi-infinite solid at an initial temperature of \(T_{i}\) that is exposed to convection to a cooler medium at a constant temperature of \(T_{\infty}\), with a heat transfer coefficient of \(h\). Explain how you can determine the total amount of heat transfer from the solid up to a specified time \(t_{o}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.