Chapter 4: Problem 38
An electronic device dissipating \(20 \mathrm{~W}\) has a mass of \(20 \mathrm{~g}\), a specific heat of \(850 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\), and a surface area of \(4 \mathrm{~cm}^{2}\). The device is lightly used, and it is on for \(5 \mathrm{~min}\) and then off for several hours, during which it cools to the ambient temperature of \(25^{\circ} \mathrm{C}\). Taking the heat transfer coefficient to be \(12 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the temperature of the device at the end of the 5 -min operating period. What would your answer be if the device were attached to an aluminum heat sink having a mass of \(200 \mathrm{~g}\) and a surface area of \(80 \mathrm{~cm}^{2}\) ? Assume the device and the heat sink to be nearly isothermal.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.