Chapter 4: Problem 165
A 6-cm-diameter 13-cm-high canned drink ( \(\rho=\) \(\left.977 \mathrm{~kg} / \mathrm{m}^{3}, k=0.607 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, c_{p}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}\right)\) initially at \(25^{\circ} \mathrm{C}\) is to be cooled to \(5^{\circ} \mathrm{C}\) by dropping it into iced water at \(0^{\circ} \mathrm{C}\). Total surface area and volume of the drink are \(A_{s}=\) \(301.6 \mathrm{~cm}^{2}\) and \(V=367.6 \mathrm{~cm}^{3}\). If the heat transfer coefficient is \(120 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine how long it will take for the drink to \(\operatorname{cool}\) to \(5^{\circ} \mathrm{C}\). Assume the can is agitated in water and thus the temperature of the drink changes uniformly with time. (a) \(1.5 \mathrm{~min}\) (b) \(8.7 \mathrm{~min}\) (c) \(11.1 \mathrm{~min}\) (d) \(26.6 \mathrm{~min}\) (e) \(6.7 \mathrm{~min}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.