Chapter 3: Problem 91
A mixture of chemicals is flowing in a pipe \(\left(k=14 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}, D_{i}=2.5 \mathrm{~cm}, D_{o}=3 \mathrm{~cm}\right.\), and \(L=10 \mathrm{~m}\) ). During the transport, the mixture undergoes an exothermic reaction having an average temperature of \(135^{\circ} \mathrm{C}\) and a convection heat transfer coefficient of \(150 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). To prevent any incident of thermal burn, the pipe needs to be insulated. However, due to the vicinity of the pipe, there is only enough room to fit a \(2.5\)-cm-thick layer of insulation over the pipe. The pipe is situated in a plant, where the average ambient air temperature is \(20^{\circ} \mathrm{C}\) and the convection heat transfer coefficient is \(25 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Determine the insulation for the pipe such that the thermal conductivity of the insulation is sufficient to maintain the outside surface temperature at \(45^{\circ} \mathrm{C}\) or lower.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.