Chapter 3: Problem 76
Steam at \(320^{\circ} \mathrm{C}\) flows in a stainless steel pipe \((k=\) \(15 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\) ) whose inner and outer diameters are \(5 \mathrm{~cm}\) and \(5.5 \mathrm{~cm}\), respectively. The pipe is covered with \(3-\mathrm{cm}\)-thick glass wool insulation \((k=0.038 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\). Heat is lost to the surroundings at \(5^{\circ} \mathrm{C}\) by natural convection and radiation, with a combined natural convection and radiation heat transfer coefficient of \(15 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Taking the heat transfer coefficient inside the pipe to be \(80 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), determine the rate of heat loss from the steam per unit length of the pipe. Also determine the temperature drops across the pipe shell and the insulation.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.