Chapter 3: Problem 179
Steam at \(235^{\circ} \mathrm{C}\) is flowing inside a steel pipe \((k=\) \(61 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) whose inner and outer diameters are \(10 \mathrm{~cm}\) and \(12 \mathrm{~cm}\), respectively, in an environment at \(20^{\circ} \mathrm{C}\). The heat transfer coefficients inside and outside the pipe are \(105 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\) and \(14 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\), respectively. Determine ( \(a\) ) the thickness of the insulation \((k=0.038 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\) needed to reduce the heat loss by 95 percent and \((b)\) the thickness of the insulation needed to reduce the exposed surface temperature of insulated pipe to \(40^{\circ} \mathrm{C}\) for safety reasons.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.