Chapter 3: Problem 164
Consider a flat ceiling that is built around \(38-\mathrm{mm} \times\) \(90-\mathrm{mm}\) wood studs with a center-to-center distance of \(400 \mathrm{~mm}\). The lower part of the ceiling is finished with 13-mm gypsum wallboard, while the upper part consists of a wood subfloor \(\left(R=0.166 \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C} / \mathrm{W}\right)\), a \(13-\mathrm{mm}\) plywood, a layer of felt \(\left(R=0.011 \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C} / \mathrm{W}\right)\), and linoleum \(\left(R=0.009 \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C} / \mathrm{W}\right)\). Both sides of the ceiling are exposed to still air. The air space constitutes 82 percent of the heat transmission area, while the studs and headers constitute 18 percent. Determine the winter \(R\)-value and the \(U\)-factor of the ceiling assuming the 90 -mm-wide air space between the studs ( \(a\) ) does not have any reflective surface, (b) has a reflective surface with \(\varepsilon=0.05\) on one side, and ( ) has reflective surfaces with \(\varepsilon=0.05\) on both sides. Assume a mean temperature of \(10^{\circ} \mathrm{C}\) and a temperature difference of \(5.6^{\circ} \mathrm{C}\) for the air space.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.