Chapter 3: Problem 132
Circular cooling fins of diameter \(D=1 \mathrm{~mm}\) and length \(L=25.4 \mathrm{~mm}\), made of copper \((k=400 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K})\), are used to enhance heat transfer from a surface that is maintained at temperature \(T_{s 1}=132^{\circ} \mathrm{C}\). Each rod has one end attached to this surface \((x=0)\), while the opposite end \((x=L)\) is joined to a second surface, which is maintained at \(T_{s 2}=0^{\circ} \mathrm{C}\). The air flowing between the surfaces and the rods is also at \(T_{\infty}=0^{\circ} \mathrm{C}\), and the convection coefficient is \(h=100 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). (a) Express the function \(\theta(x)=T(x)-T_{\infty}\) along a fin, and calculate the temperature at \(x=L / 2\). (b) Determine the rate of heat transferred from the hot surface through each fin and the fin effectiveness. Is the use of fins justified? Why? (c) What is the total rate of heat transfer from a \(10-\mathrm{cm}\) by 10 -cm section of the wall, which has 625 uniformly distributed fins? Assume the same convection coefficient for the fin and for the unfinned wall surface.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.