Chapter 2: Problem 88
Consider a large plane wall of thickness \(L=0.05 \mathrm{~m}\). The wall surface at \(x=0\) is insulated, while the surface at \(x=L\) is maintained at a temperature of \(30^{\circ} \mathrm{C}\). The thermal conductivity of the wall is \(k=30 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and heat is generated in the wall at a rate of \(\dot{e}_{\text {gen }}=\dot{e}_{0} e^{-0.5 x / L} \mathrm{~W} / \mathrm{m}^{3}\) where \(\dot{e}_{0}=8 \times 10^{6} \mathrm{~W} / \mathrm{m}^{3}\). Assuming steady one-dimensional heat transfer, \((a)\) express the differential equation and the boundary conditions for heat conduction through the wall, \((b)\) obtain a relation for the variation of temperature in the wall by solving the differential equation, and (c) determine the temperature of the insulated surface of the wall.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.