Chapter 2: Problem 59
Consider a large plane wall of thickness \(L=0.4 \mathrm{~m}\), thermal conductivity \(k=1.8 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\), and surface area \(A=\) \(30 \mathrm{~m}^{2}\). The left side of the wall is maintained at a constant temperature of \(T_{1}=90^{\circ} \mathrm{C}\) while the right side loses heat by convection to the surrounding air at \(T_{\infty}=25^{\circ} \mathrm{C}\) with a heat transfer coefficient of \(h=24 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Assuming constant thermal conductivity and no heat generation in the wall, \((a)\) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the wall, \((b)\) obtain a relation for the variation of temperature in the wall by solving the differential equation, and \((c)\) evaluate the rate of heat transfer through the wall. Answer: (c) \(7389 \mathrm{~W}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.