Chapter 2: Problem 58
Consider the base plate of an \(800-W\) household iron with a thickness of \(L=0.6 \mathrm{~cm}\), base area of \(A=160 \mathrm{~cm}^{2}\), and thermal conductivity of \(k=60 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}\). The inner surface of the base plate is subjected to uniform heat flux generated by the resistance heaters inside. When steady operating conditions are reached, the outer surface temperature of the plate is measured to be \(112^{\circ} \mathrm{C}\). Disregarding any heat loss through the upper part of the iron, \((a)\) express the differential equation and the boundary conditions for steady one-dimensional heat conduction through the plate, \((b)\) obtain a relation for the variation of temperature in the base plate by solving the differential equation, and (c) evaluate the inner surface temperature. Answer: (c) \(117^{\circ} \mathrm{C}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.