Chapter 2: Problem 47
Water flows through a pipe at an average temperature of \(T_{\infty}=90^{\circ} \mathrm{C}\). The inner and outer radii of the pipe are \(r_{1}=\) \(6 \mathrm{~cm}\) and \(r_{2}=6.5 \mathrm{~cm}\), respectively. The outer surface of the pipe is wrapped with a thin electric heater that consumes \(400 \mathrm{~W}\) per \(\mathrm{m}\) length of the pipe. The exposed surface of the heater is heavily insulated so that the entire heat generated in the heater is transferred to the pipe. Heat is transferred from the inner surface of the pipe to the water by convection with a heat transfer coefficient of \(h=85 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\). Assuming constant thermal conductivity and one-dimensional heat transfer, express the mathematical formulation (the differential equation and the boundary conditions) of the heat conduction in the pipe during steady operation. Do not solve.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.